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ABSTRACT
We consider the loss in social welfare caused by individual
rationality in matching scenarios. We give both theoretical
and experimental results comparing stable matchings with
socially optimal ones, as well as studying the convergence of
various natural algorithms to stable matchings. Our main
goal is to design mechanisms in order to incentivize agents
to participate in matchings that are socially desirable. We
show that theoretically, the loss in social welfare caused by
strategic behavior can be substantial. We analyze some nat-
ural distributions of utilities that agents receive from match-
ings, and find that in most cases the stable matching attains
close to the optimal social welfare. Furthermore, for cer-
tain graph structures, simple greedy algorithms for partner-
switching (some without convergence guarantees) converge
to stability remarkably quickly in expectation. Even when
stable matchings are significantly socially suboptimal, slight
changes in incentives can provide good solutions. We derive
conditions for the existence of approximately stable match-
ings that are also close to socially optimal, which demon-
strates that adding small switching costs can make socially
optimal matchings stable. We also show that introducing
heterogeneity in tastes can greatly improve social outcomes.

1. INTRODUCTION
This paper investigates the social quality of stable match-

ings. The theory of stable matching has received a tremen-
dous amount of attention because of its many applications,
including matching graduating medical students to residency
programs [21], and matching kidney donors with recipients
[4]. Most of the work on stable matching has assumed that
the agents being matched have some preference ordering on
who they would like to be matched with, without assigning
a concrete utility for agent i being matched with agent j
[22; 23; 15, inter alia]. This is natural, because stability as a
concept does not need the stronger requirement of ascribing
utilities to outcomes: it only needs the ranking of matchings
from the perspective of every agent.
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Matching problems, however, often bring with them out-
comes that need to be evaluated in terms of utility. This
occurs, for example, in pair programming, a central practice
of the software engineering methodology known as Extreme
Programming [12]. The utility of a matching is a function of
the productivity of a pair of programmers working together.
In kidney exchange, as well as many other stable matching
scenarios, the goal is not only to form stable matchings, but
also to form a matching with high overall utility.

The properties of matching mechanisms determine the
utilities received by agents in these situations. A good mech-
anism for kidney exchange could make donors happier with
their decision to donate while arranging the best possible
matches for recipients. A good mechanism for pairing pro-
grammers would lead to the best possible programming pro-
ductivity for their employer. Inevitably, there is a tradeoff
between stable matchings, which are pairwise (or groupwise)
rational, and socially optimal matchings (for our purposes,
for the rest of this paper we assume simple additive social
utilities, so that the socially optimal matching is the one
that maximizes the sum of utilities received by each individ-
ual). The central question of mechanism design for matching
markets is how to get people into “good” matchings, how-
ever “good” is defined. Almost all the work on matching
mechanism design has focused on engineering stable match-
ings. This work has met with significant large-scale success
in applications like matching graduating medical students to
residency programs, and matching students to public high
schools [1, 21]. Some of this work, especially recent work on
designing high school student matches, also explicitly seeks
to realize the best matchings for one side of the market (in
the high school case, the best matchings for students), but
the notion of welfare is weak pareto-optimality among the
set of stable matches for one side of the market [2].

The focus of this paper is on extending our understanding
of matching problems in situations where we are concerned
with social welfare in terms of utility, instead of just stabil-
ity and choice among stable outcomes. Several alternatives
may be available in these situations, ranging from purely
centralized allocation based on information available to a
matchmaker, to purely individual decision-making based on
personal preferences. The first set of questions that arises
can be divided into three categories: (1) How bad are stable
matchings when compared with socially optimal ones? (2)
Can agents find stable matchings on their own? What are
the outcomes of algorithms they may actually use in prac-
tice? (3) How can we incentivize agents to participate in
matchings that are socially desirable?



Our Results. We initiate an investigation of the ques-
tions described above in the context of two-sided matchings,
and give both theoretical and experimental results. Specif-
ically, we study the effects of different network structures
and utility distributions on the price of anarchy: the ratio
of social utilities achieved by stable and optimal matchings
respectively. We find that in most cases the stable matching
attains close to the optimal social welfare (generally above
90%). We characterize some situations where the price of
anarchy can be more substantial, and then study a poten-
tial means of incentivizing good stable matchings in Section
5. We consider approximate stability, which corresponds to
the addition of a switching cost to the mechanism, so that
an agent would have to pay in order to deviate from the
current matching. We show both theoretically and exper-
imentally that the addition of a small switching cost can
greatly improve the price of anarchy. Finally, in Section 6
we consider several greedy algorithms for partner-switching,
and show experimentally that they converge quickly to sta-
bility for some simple yet natural distributions of utilities,
as well as prove convergence guarantees.

2. MATCHING, STABILITY, AND SOCIAL
WELFARE

Matching, the process of agents forming beneficial part-
nerships, is one of the most fundamental social processes.
Examples of matching with self-interested agents range from
basic social activities (marriage, mate assignment [9]), to
the core of economic activity (matching employees and em-
ployers [17]), to recent innovations in health care (matching
kidney donors and recipients [4]). The process of matching
can be extremely complex, since (1) agents can have compli-
cated preferences, and (2), in most social applications agents
are self-interested: they care mostly about their own welfare,
and would not obey a centralized matching algorithm unless
it was to their benefit.

For this reason, the outcomes of matching processes are
usually analyzed in terms of stability, the requirement that
no collection of agents could form a group together, and be-
come better off than they are currently [22]. For the classic
“stable marriage” problem [13], this corresponds to the lack
of desire of any pair to drop their current partners and in-
stead match with each other. Stable matching algorithms
have been used in many applications including matching
medical residents with hospitals [21], students with soror-
ities and schools [1, 19], and online users with servers.

While stable matchings may be natural outcomes, desir-
able for various reasons, there are few guarantees on the
quality and social welfare of stable matchings. Most re-
search on matchings of self-interested agents has focused
on (1) defining outcomes with stability as the goal (most
of the work on the design of two-sided matching markets
attempts to do exactly this by defining problems appropri-
ately [22]), (2) computing stable outcomes and understand-
ing their properties (ranging from the seminal work of Gale
and Shapley [13] to algorithms that try and compute “opti-
mal” matches, for example by minimizing the average pref-
erence ranking of matched partners [16]), and (3) design-
ing truthful preference-revealing mechanisms (such as in the
New York City [2] and Boston public school matches [3]).
Questions about the social welfare of stable matchings have

been less studied.1 There has been almost no research on
constructing socially desirable stable outcomes, partly be-
cause in most situations one cannot instruct self-interested
agents on what to do in order to engineer such outcomes,
since an agent will only follow instructions if it benefits them
personally.

An increasing body of literature in behavioral economics
and social science (e.g. [25]), however, suggests that de-
sirable outcomes can be achieved by giving people a little
“nudge” in certain directions, perhaps by altering their in-
centives slightly, while still leaving them with freedom to
choose their own actions. Small changes that greatly im-
prove a social system are easy to identify in some situa-
tions: for example, making 401(K) plans opt-out rather than
opt-in increases participation dramatically. Finding similar
changes in matching scenarios is more difficult because of
the complexity of a system where any agent’s actions can
theoretically affect a large number of other agents.

Before addressing the mechanism design question of how
to achieve better social outcomes, we first need to address
the question of whether or not stable matching can lead to
substantial social losses. For this question to make sense,
we first need an objective function that measures the qual-
ity of a matching. As mentioned in the introduction, one
of the reasons why the social quality of stable matchings is
usually not addressed is because the agents in question are
assumed to have a preference ordering on their possible part-
ners, without a specific utility function that states how good
a match would be. While there has been some work on mea-
suring the quality of a matching by, for example, the average
preference ranking of matched partners [16], such measures
can sometimes be hard to justify. For example, for an agent
A, the second choice in its preference order might be a lot
worse than its first choice, while for agent B, the second
choice might be only a little bit worse. Measures such as
the one above would make no such distinction. In this pa-
per, we are specifically concerned with contexts where every
agent has a utility function, not just a preference ordering:
that is, for every possible partner v, an agent has a value
U(v) specifying how happy it would be to be matched with
v. We are especially concerned with measuring the quality
of a matching in terms of social welfare: the total sum of
utilities for all the agents.

We would like to understand the social welfare of stable
matching. The tradeoff between stable matchings and so-
cially optimal matchings is quantified by the price of anar-
chy : the ratio between the maximum possible social utility
and the utilities of equilibrium outcomes (stable matchings).
Understanding the price of anarchy is important, since it
acts as a bound on the amount of improvement in stable
matchings that better mechanisms could yield.
Price of Anarchy Bounds. The price of anarchy can vary
widely depending on the problem instance and the prefer-
ence structure. As an example, Figure 1 illustrates some
cases where the stable matching is highly socially subopti-
mal (discussed in more detail in the next section). In two
of the underlying types of graph structures, the price of an-
archy is at most two (and the bound can be tight), while

1As mentioned in the introduction, one of the desiderata
for matching students with schools or medical students with
residencies can be to compute the stable matching that is
best (typically) for the students, but this is a different notion
of welfare.



in the third the social utility of the stable matching can be
arbitrarily bad compared with the socially optimal one. But
how bad are stable matchings in expectation?

This question is tackled in detail in Section 4. Empirically,
we find that despite the potentially bad worst-case behavior,
across many different random distributions of preferences
and several graph structures the price of anarchy tends to
be lower (stable matchings usually achieve above 90% of the
utility of socially optimal matchings). There are also some
cases where the price of anarchy is not the right measure –
we show a case where tweaking a preference-related param-
eter increases the price of anarchy significantly, but makes
everyone better off in expectation because it raises the value
of the optimal social matching. When the price of anar-
chy is a good measure, how can we incentivize socially good
matchings?
Creating Better Stable Matchings. Given the agents’
utilities, the social-welfare maximizing matching can be com-
puted by finding a maximum weighted matching on a graph.
We cannot just force people to accept such a matching be-
cause of individual preferences. But what if we could suggest
a good matching, and provide some incentives for agents to
go along with those matchings? This is the subject of Sec-
tion 5. We consider changing incentives to make more so-
cially desirable matchings become stable by adding switch-
ing costs into the system. We show both theoretically and
empirically that a small amount of incentives can greatly
affect the quality of stable matchings.
Convergence to Stability. Another natural question we
ask is whether stable matchings will arise in practical sit-
uations, where each participant does not want to submit
his or her preferences to a centralized matchmaker. Pre-
vious work has focused especially on randomized best re-
sponse dynamics [5, 20]. We know that simple decentralized
partner switching algorithms can fail to converge to stable
matchings in many situations [5]. However, what happens
in cases where the structure of preferences obeys some extra
constraints? We explore this question in Section 6.

3. THE MATCHING MODEL
In this paper we are concerned with pairwise matching

problems. While we focus on bipartite graphs, (most of)
our results also hold for general graphs, and in our exper-
iments we did not find a significant difference between the
quality of matchings in bipartite and non-bipartite graphs.
We assume that each agent gains some utility from being
paired up with another agent. The utility of remaining un-
matched is assumed to be 0. We consider each agent as a
vertex in a graph G, and only agents u and v with the edge
(u, v) being present in G are allowed to be matched with
each other. In two-sided matching scenarios, the agents can
be separated into two types, one on each side of the graph,
and no edges are allowed between agents of the same type.

We consider several different utility structures:

1. Vertex-labeled graphs: A vertex-labeled graph is
defined as G = (V, E, w) where V is the set of ver-
tices, E is the set of (undirected) edges, and w is a
vector of weights corresponding to the vertices. When
two vertices u and v are in a matching, the agent corre-
sponding to u receives utility w(v) and the agent corre-
sponding to v receives utility w(u). These graphs cor-
respond to a situation where being paired with agent

X will yield the same utility to any agent Y allowed
to match with X, independent of the identity of Y .

2. Symmetric edge-labeled graphs: A symmetric edge-
labeled graph G = (V, E, w) is different in that the
weights w correspond to edges rather than vertices.
When two vertices u and v are in a matching, the
agents corresponding to both u and v receive util-
ity w({u, v}). These graphs reflect situations where
the utility received by both members of a pair is the
same, perhaps determined by their combined output
when working together – for example, pair program-
ming may be judged by the productivity of the pair.
Markets with these types of utilities are called “corre-
lated two-sided markets” in [5].

3. Asymmetric edge-labeled graphs: An asymmetric
edge-labeled graph G = (V, E, w) is the same except
that edges are now directed, and the utility received
by agent u in a matching that includes the pair u, v is
given by w(u, v), while the utility received by v is given
by w(v, u). This is the most general case, in which each
agent receives an unconstrained value from each agent
they may possibly be paired with.

We also consider combinations of the above models, such
as when agent u’s utility for being matched with v has a
vertex-labeled component w(v), as well as an edge-labeled
component w(u, v). The types of utilities mentioned above
arise in many contexts including market sharing games [14]
and distributed caching games [18]. In the context of mar-
riage markets, vertex-labeled graphs are equivalent to what
Das and Kamenica call sex-wide homogeneity of preferences,
and edge-labeled graphs are equivalent to what they call
pairwise homogeneity of preferences [11].

In addition to these, one can also vary the distributions
from which actual utility values are sampled. We focus on
presenting results from experiments with exponential and
uniform distributions. The results we obtained for other
distributions, as well as for other graph structures (e.g., non-
bipartite, small-world, preferential attachment), were not
significantly different.

4. THE PRICE OF ANARCHY
In general, the price of anarchy is the ratio between the

social utility of the (worst) equilibrium outcome of a game
and the maximum social utility possible in that game. The
usual definition relates the largest social welfare achievable
to the social welfare of the worst Nash equilibrium. In the
context of matching, we have to move from the concept of
Nash equilibrium to the concept of stable equilibrium de-
scribed above, because stable outcomes are determined by
the possibility of pairwise deviations rather than individual
deviations.

The price of anarchy can vary widely depending on the
problem instance and the preference structure. As an exam-
ple, Figure 1 illustrates some cases where the stable match-
ing is highly socially suboptimal (the price of anarchy is
high) in the three different preference settings for two-sided
matching described in Section 3. On the positive side, below
we present price of anarchy bounds for the three models we
consider.

Observation 1. In symmetric edge-labeled graphs, the
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Figure 1: Worst-case realizations of the price of anarchy in different models. In each case the socially optimal
matching is {(A, C), (B, D)} but the only stable matching pairs A and D.

social utility of any stable matching is at least one-half of
the social utility of the optimum matching.

In other words, this observation says exactly that the price
of anarchy is at most 2. Notice that the socially optimal
matching is simply the maximum-weight matching in this
model. The above observation is a special case of Theorem
1 (proved in Section 5), but it can also be seen to follow
from two facts: (1) Any stable matching can be returned by
an algorithm that examines edges greedily by magnitude,
adding them to the matching if the vertices involved have
not yet been matched (the particular stable matching pro-
duced depends on the procedure for breaking ties between
equal-weighted edges), and (2) Any greedy solution to the
maximum weighted matching problem is within a factor of
two of the optimal solution. Note that this argument holds
generally, even for non-bipartite graphs. Figure 1(a) pro-
vides an example of a graph where this bound is achieved,
showing that the bound of 2 on the price of anarchy is tight.

Observation 2. In vertex labeled graphs the social utility
of any stable matching is at least one-half of the social utility
of the optimum matching.

This is a consequence of Theorem 2 (see Section 5 for
further discussion). Again, Figure 1(b) provides an example
of a graph where this bound is achieved.

Observation 3. In asymmetric edge-labeled graphs, the
social utility of the stable matching can be arbitrarily bad
compared with the socially optimal matching.

Consider the case in Figure 1(c) – the utility received by
agent B from being matched with Agent D is arbitrarily
high, but the pair is not part of the stable matching, so the
loss in utility can be unbounded. Again this argument holds
for non-bipartite graphs as well.

These are worst-case constructions. A natural question
is what the price of anarchy is like in realistic graphs with
different distributions over utilities. We examined several
different distributions of utilities within the three models de-
scribed above, and also considered different graph structures
in order to get a sense of the potential practical implications
of these price of anarchy results. We used random distribu-
tions of the utility values on random bipartite (and later
non-bipartite) graphs of the different types described above,
and computed both the maximum-weighted stable match-
ing (the socially optimal matching) and a stable matching
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Figure 2: Average ratio of the realized stable match-
ing to the maximum weighted matching in three dif-
ferent preference models when utilities are sampled
at random from exponential and uniform distribu-
tions with the same mean (0.5: the rate parameter is
2 for the exponential and the support of the uniform
is [0, 1]). Reported values are averaged over 200 runs.
There are 100 agents on each side of the matching
market in all cases. The X axis shows the degree of
each node. Note that the ratio is very high, almost
never dropping below 85%, even in individual runs.

using the Gale-Shapley algorithm (in all cases considered
here, except one described in more detail below, the propos-
ing side does not affect the outcome in expectation because
preference distributions are symmetric).

Figure 2 shows that when utilities are randomly distributed
according to two common distributions (exponential and
uniform, although this result seems to be robust across many
different distributions), the social loss due to stability is not
particularly high in any of the three models we describe
above. This is not surprising for vertex labeled graphs –
since any person in the matching will contribute the same to
the total utility regardless of whom they are matched with
(for example, every perfect matching is socially optimal).
As the average degree of each vertex increases, the number
of agents getting matched increases, and the ratio quickly
reaches 1, because all stable matchings become perfect at
some point. However, the result is considerably more sur-
prising for the other two cases, particularly for asymmetric
edge-labeled preferences. The only case in which the ratio
goes below 0.9 is for exponentially distributed utilities with
asymmetric edge-labeled preferences (the ratio stops declin-
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Figure 3: Average ratio of the realized stable match-
ing to the maximum weighted matching with two
different non-bipartite graph structures: (1) small
world networks and (2) preferential attachment net-
works of different average degree, both with 100
nodes. Utilities are sampled independently from an
exponential distribution with mean 0.5. Results are
averaged over 200 runs.

ing significantly beyond degree 10). For asymmetric edge
labeled graphs, it makes sense that the ratio declines as the
degree of the graph gets larger, because it becomes possible
to construct matchings that are socially much better. Our
experiments show that the value of the optimal matching
grows quickly (since it has more options available), while the
value of stable matching grows slowly (since it is hampered
by the stability constraint). The actual high percentage is
quite surprising given that in theory, the ratio could be ar-
bitrarily bad. The uniform distribution ratios are generally
higher than those for the exponential distribution because
the uniform distribution enforces a compression in the range
of high utilities by capping utilities at 1.

Figure 3 shows that the high ratio is not an accident of
using random bipartite graphs. In non-bipartite graphs that
are known for their power in modeling social and engineering
systems, namely preferential attachment networks [8] and
small-world networks on a lattice [26], the results are similar,
with the computed stable matching achieving, on average,
above 95% of the value of the socially optimal matching.
This result also holds in lattice networks and in networks
defined in Euclidean space where the utility of a matching
for any pair is the inverse of the distance between them.

Thus it appears that in random graphs, stable matchings
attain a very high proportion of the maximum social utility.
There are however some preference structures for which this
does not hold. Consider a case where the utilities received
by one side of the market are much higher than utilities re-
ceived by the other side. In addition, suppose that the side
with lower utilities is more powerful, and is therefore able
to choose the stable matching optimal for those on that side
of the market (these situations could correspond to many in
real life – for example, employers are more powerful than em-
ployees). This power structure is implemented by running
the Gale-Shapley algorithm with the more powerful side be-
ing the side that proposes, which results in the best stable
matching for the proposing side. In this case the ratio of
utilities can be substantially lower, as seen in Figure 4. In
other words, if we only care about the welfare of one side
of the market, there can exist stable matchings much worse
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Figure 4: Average ratio of the realized stable match-
ing to the maximum weighted matching when the
utilities received by those on the less “powerful” side
of the market are 10000 times as high as those re-
ceived by those on the more powerful side, but the
stable matching is the one optimal for the more pow-
erful side. Results are averaged over 200 runs. Util-
ities are exponentially distributed.

than the optimal ones (although still much better than the
theoretical bound of one-half).

When anarchy is good.
The price of anarchy is not the only important measure.

Our experiments so far reveal that the price of anarchy
is lower for vertex labeled graphs, especially as the degree
grows. This is mostly because any perfect matching is so-
cially optimal. As more and more vertices get included in
the matching, we get closer and closer to the socially op-
timal matching. But this is essentially a case of scarce re-
sources, and no synergies – the average utility received by
everyone in a perfect matching is the value of the average
vertex – there is no chance to make everyone better off be-
cause some pairs work better together or like each other
more. If preferences were more heterogeneous, there would
be more such synergies that could be exploited. In order to
explore this further, we experiment with varying the level of
homogeneity in preferences by making preferences a convex
combination of vertex-labeled and asymmetric edge-labeled
preferences, while holding the average value constant. In
this case the value received by u from matching with v is
given by λw(v) + (1− λ)z where both w(v) and z are sam-
pled from exponential distributions with mean 0.5, but w(v)
is an intrinsic feature of the node v which is the same for any
u that is connected to v, while z is idiosyncratic (indepen-
dently sampled for each u that is connected to v). Then λ
represents the degree of homogeneity of preferences. Figure
5 shows that, while the ratio of stable-to-optimal utilities
goes up dramatically as preferences approach pure homo-
geneity, this is accompanied by a decline in average utility
received by each individual. This indicates that having some
heterogeneity in preferences is a good thing for society: even
if it leads to a higher price of anarchy, everyone is better off
than they would be in a lower price-of-anarchy society.

5. IMPROVING SOCIAL OUTCOMES
In this section, we consider how to improve the quality

of stable matchings. We consider, both theoretically and in
simulation, the addition of a switching cost to the mecha-
nism so that an agent would have to pay in order to deviate
from the current matching. We find that it is possible to im-
prove the quality of social outcomes substantially by mak-
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Figure 5: The ratio of the realized stable matching
to the maximum weighted matching (going up from
left to right, left Y axis) and the average utility re-
ceived by each agent (going down from left to right,
right Y axis) as a function of the degree of homo-
geneity of preferences (0 being completely hetero-
geneous, i.e. asymmetric edge-labeled, and 1 being
completely homogeneous, i.e. vertex-labeled). The
graphs are bipartite, containing 100 nodes on each
side, and the degree of each vertex is 10. The aver-
age utility of any edge remains 0.5 for each setting.
Results are averaged over 200 runs.

ing only small changes to the incentives of the agents, and
thus without drastically changing the nature of the match-
ing market. Note that in the cases considered in this section,
there is no change in preferences of the sort discussed im-
mediately above, so the price of anarchy is actually a good
proxy for social (dis)utility.

5.1 Approximate Stability and Switching Costs
An approximate equilibrium is a solution where no agent

gains more than a small factor in utility by deviating. In
the case of matching, we consider the following notion of
approximately-stable matching.

Definition 1. A matching is called α-stable if there does
not exist a pair of agents not matched with each other who
would both increase their utility by a factor of more than α
by switching to each other.

If α = 1, then this is exactly a stable matching. An α-
stable matching also corresponds to a stable solution if we
assume that switching has a cost. In other words, in the
presence of switching costs, the set of stable matchings is
simply the set of α-stable matchings without switching costs.

In this section we are concerned with understanding how
increasing α improves the quality of stable matchings. We
are specifically concerned with the price of stability [6], which
is the ratio of the utility of the best stable matching relative
to the optimum matching. Much recent work in network
design [7] and routing [10, 24] has considered the price of
stability in various contexts. The price of stability is es-
pecially important from the point of view of a mechanism
designer with limited power, since it can compute the best
stable solution and suggest it to the agents, who would im-
plement this solution since it is stable. Therefore, the price
of stability captures the problem of optimization subject to
the stability constraint.
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Figure 6: Ratio of the social utilities of best α-
stable and socially optimal matchings as a function
of α when the matchings are constructed according
to our algorithm in symmetric edge-labeled graphs.
The dramatic increase between α = 1 and α = 1.1
shows that introducing even small switching costs
has the potential to produce significant social bene-
fits. Preferences were sampled uniformly at random
on [0, 1].

Below we present various theoretical bounds, showing that
for symmetric edge-labeled graphs, there always exists an α-
stable matching with utility of at least α

2
OPT (where OPT

is the value of the optimum matching), and that in vertex-
labeled graphs, there always exists an α-stable matching
with utility at least α

1+α
OPT. We provide a constructive

algorithm for finding such an α-stable matching. This shows
that by increasing α, we can implement much better stable
solutions than for α = 1, and decrease the price of stabil-
ity. Our empirical results using this algorithm show an even
more dramatic improvement than predicted by the theoret-
ical bounds. For example, Figure 6 shows that for α = 1.1
we already obtain a tremendous improvement in the quality
of stable matching, essentially obtaining stable matchings
that are as good as a matching with maximum utility. This
means that adding a switching cost as small as five or ten
percent can make an enormous difference in the quality of
stable matchings. In many situations, it is reasonable to be-
lieve that a central controller can compute a good α-stable
matching, assign agents to that matching, and only allow
them to deviate on payment of the switching cost.

5.2 Edge-labeled Graphs
For edge-labeled graphs, we prove below that in the pres-

ence of switching costs of a factor α, the price of anarchy
is at most 2α, but the price of stability is at most 2/α.
This means that as we increase α, there begin to be stable
matchings that are worse, but there always exists a stable
matching that is close to optimal. For α = 1, these bounds
coincide, giving us the result that all stable matchings are
within a factor of 2 from the maximum weight matching.
For α = 2, this gives us the easily verifiable fact that the
optimum matching is 2-stable.

Theorem 1. Let OPT be the value of the socially optimal
matching. In any undirected edge-labeled graph, there exists
an α-stable matching whose social utility is at least α

2
OPT.

Furthermore, the social utility of any α-stable matching is



at least 1
2α

OPT.

Proof. Denote by w(M) the weight of a matching M .
First, notice that the socially optimal matching is simply
the maximum weight matching in this model, since the social
welfare of a matching is exactly twice its weight. Let OPT
denote the weight of the maximum weight matching, and
prove that the weight of α-stable matchings obeys the lower
bounds mentioned in the theorem statement. We first prove
that for every α ≥ 1, every α-Stable Matching in G is of
weight at least OPT

2α
.

Let M be an α-stable matching in G, and M∗ be a maximum-
weight matching in G. Let e1 = (u, v) be an arbitrary edge
in M∗ \M . Since M is an α-stable matching, there must be
either an edge e2 = (u, w1) ∈ M or an edge e3 = (v, w2) ∈ M
such that w(e1) ≤ αw(e2) or w(e1) ≤ αw(e3) (if neither were
true, then u and v could match to each other and gain more
than a factor of α in utility). Therefore for every edge e in
M∗, either e ∈ M , or there is an edge e′ of M sharing a node
with e such that w(e) ≤ αw(e′). Since at most two edges of
M∗ can share a node with the same edge e′ of M (because
M∗ is a matching), this means that if we sum the above
inequalities, we obtain w(M∗) ≤ 2α · w(M), as desired.

We now prove that there always exists an α-stable match-
ing M such that w(M) ≥ α

2
w(M∗) by giving an algorithm

for finding such a matching:

Set M = M∗

Sort the edges of G in order of decreasing weight.
For each edge e = (v1, v2) ∈ G in this order:

Let e1, e2 be edges to which v1, v2 are incident in M , re-
spectively (if they exist)

If w(e)
α

is greater than both w(e1) and w(e2):
Remove e1 and e2 from M .
Add e to M .

End If
Loop

This algorithm considers all edges in the graph in order of
decreasing weight, and if the two nodes in the edge can gain
a factor of α utility by deviating to this edge, then we let
them. If an edge e1 does not exist, then for the new edge e to

be added to the matching, all we need is that w(e)
α

> w(e2).
Call the edge e = (v1, v2) in the algorithm as the edge being
currently examined. To prove correctness, we must show two
facts:

(i) The algorithm results in an α-Stable Matching.

(ii) The resulting matching is of weight at least w(M∗)α
2

.

To begin the proof of (i), notice that M is a matching.
This is simply because whenever we add an edge (u, v) to
M , we also remove the edges incident to the nodes u and v.
Since we start with a matching M∗, we know that M is a
matching at every point in the algorithm.

By Lemma 1, we know that if an edge e = (u, v) is in
the matching M immediately after it is examined, then it
will not be removed from M later. Notice also that if edge
e = (u, v) is not in the matching M after it is examined,
then it will never be added to M later in the course of the
algorithm, because the algorithm only adds edges to the
matching at the time that it is examining them. Therefore,
the final matching M consists exactly of edges that are kept
in M at the time the algorithm examines them.

To show that the returned matching is α-stable, suppose
to the contrary that there is an instability in the final match-
ing M , i.e., an edge e1 = (u, v) 6∈ M such that w(e1) >
αw(e2) and w(e1) > αw(e3), where e2 and e3 are the edges
of M incident to u and v (which may not exist). Since e1 is
not in the final matching M , it could not have been included
in the matching when it was examined. This implies that
at this time there was an edge e′ ∈ M incident to (without
loss of generality) u, with w(e1) ≤ αw(e′). This edge e′ can-
not still be in the matching M at the end of the algorithm’s
execution, since otherwise e1 would not form an instabil-
ity. Therefore, the algorithm must have removed edge e′ at
a later point. The only reason why edge e′ would be re-
moved is if an edge e′′ were added to the matching, with
w(e′′) > αw(e′) ≥ w(e1). Since the algorithm considers the
edges in order of decreasing weight, however, this edge e′′

could only have been added before the algorithm examined
edge e1, and so we have a contradiction.

We now prove (ii). At each examination in the algorithm,
one of two things can occur. The trivial case is that no
edge is formed so no change occurs in M . The other case,
in which a new edge e is added to the matching, adds an

edge of weight w(e) to M while removing at most 2 · w(e)
α

.
The ratio of the new edge weight to the old edges weight is

therefore w(e)

2· w(e)
α

= α
2
. By Lemma 1, once an edge is added

to the matching M by the algorithm, it is never removed
again, so the total weight of the final matching M is at least
α
2
w(M∗), as desired, completing the proof of Theorem 1.

Lemma 1. If an edge e = (u, v) is in the matching M
immediately after it is examined, then it will not be removed
from M later.

Proof. Suppose to the contrary that e = (u, v) ∈ M
directly after it is examined, but is no longer in M at a later
point. Without loss of generality, assume that e was removed
from M because some edge e′ = (u, w) was added. For this
to occur, it must be that w(e′) > αw(e). But since α ≥ 1,
and the algorithm examines the edges in order of decreasing
weight, then this addition of edge e′ could only have occurred
before the algorithm examined e, a contradiction.

5.3 Vertex Labeled Graphs
For vertex labeled graphs, results similar to Theorem 1

hold: the price of anarchy is at most 1 + α and the price
of stability is at most (1 + α)/α. For α = 1 this gives us
the observation in Section 4 (notice that while it is easy to
show a correspondence between stable matchings for edge-
labeled and vertex-labeled graphs, the same does not hold
for α-stable matchings).

Theorem 2. Let OPT be the value of the maximum-weight
perfect matching. In any vertex-labeled graph, there exists an
α-stable matching whose social utility is at least α

1+α
OPT.

Furthermore, the social utility of any α-stable matching is
at least 1

1+α
OPT.

Proof. For an edge e = (u, v), define w(e) = w(u) +
w(v), and denote by w(M) the weight of a matching M .
First, notice that the socially optimal matching is simply
the maximum weight matching in this model, since the social
welfare of a matching is exactly equal to its weight. There-
fore, we let OPT denote the weight of the maximum weight
matching, and prove that the weight of α-stable matchings



obeys the stated lower bounds. We first prove that for every
α ≥ 1, every α-Stable Matching in G is of weight at least

1
1+α

OPT.
The proof is similar to the proof of Theorem 1, but some

extra details are necessary. Let M be an α-stable matching
in G, and M∗ be a maximum-weight matching in G. Let
e1 = (u, v) be an arbitrary edge in M∗ \ M . Since M is
α-stable, there must be either an edge e2 = (u, w1) ∈ M
or an edge e3 = (v, w2) ∈ M such that w(u) ≤ αw(w2)
or w(v) ≤ αw(w1) (otherwise u and v could match to each
other and gain more than a factor of α in utility). We call
this edge a “witness” for e1, since it prevents e1 from being
an instability for the α-stable matching M . Therefore for
every edge e1 in M∗, either e1 ∈ M , or there is such a
witness edge e of M sharing a node with e1.

The structure of vertex labeled graphs allows us to obtain
better bounds than we could for edge-labeled graphs. We
prove that M has high weight by comparing the weight of
edges in M∗ with the edges that act as their witnesses. As
in Theorem 1, if the edge is also in M , then the weight does
not change. Consider the case where e = (u, v) ∈ M acts as
a witness for two edges eu = (u, v′) and ev = (v, u′) of M∗.
In this case, w(eu)+w(ev) = w(u)+w(v)+w(u′)+w(v′) ≤
w(u)+w(v)+αw(u)+αw(v) = (1+α)w(e). If e only acts as
a witness for eu, then we know that w(eu) = w(u)+w(v′) ≤
w(u) + αw(v) ≤ αw(e). The edge e cannot act as a witness
for more than two edges, since M∗ is a matching, and so e
can only be touching two edges of M∗. Therefore, in the
worst case w(M∗) ≤ (1 + α)w(M), as desired.

To prove the other statement in the theorem, we construct
an α-stable matching with weight at least α

1+α
w(M∗). We

use the same algorithm as in the proof of Theorem 1, but
we must sort the edges using a more complicated ordering
than simply by the sum of their node weights. Specifically,
we define a new notion of edge weight by ρ(e) = w(u) ·w(v)
for an edge e = (u, v). We then run the algorithm in the
proof of Theorem 1, with the weight of an edge e being ρ(e).
In the rest of this proof, we use the same notation as in the
proof of Theorem 1. We must show that:

(i) This algorithm results in an α-Stable Matching.

(ii) The resulting matching is of weight at least w(M∗)α
1+α

.

Consider the definition of what it means for a node u to be
α-stable in a vertex labeled graph. It states that if (u, v) ∈
M , then there cannot be an edge (u, v′) with w(v′) > αw(v).
This is equivalent to stating that w(u)w(v′) > αw(u)w(v),
which is the same as saying that ρ(u, v′) > αρ(u, v). There-
fore, a vertex labeled graph is α-stable exactly when the
same edge labeled graph is α-stable, with edge weights be-
ing ρ(e). Since we know that our algorithm produces an α-
stable matching for edge labeled graphs with edge weights
ρ(e), then it must also produce an α-stable matching for our
vertex labeled graph.

We now prove (ii). At each examination in the algorithm,
one of two things can occur. The trivial case is that no edge
is formed so no change occurs in M . The other case, in which
a connection is formed, adds an edge e = (u, v) instead of
edges eu = (u, v′), ev = (v, u′) such that ρ(e) > αρ(eu) and
ρ(e) > αρ(ev). By our definition of ρ, this implies that
w(v) > αw(v′) and w(u) > αw(u′). The ratio of the new
edge weight to the old edge weight is (w(u)+w(v))/(w(u)+
w(v) + w(u′) + w(v′)) ≥ 1/(1 + 1

α
) = α

1+α
. By Lemma 1,

once an edge is added to the matching M by the algorithm,
it is never removed again, so the total weight of the final
matching M is at least α

1+α
w(M∗). This concludes the proof

of Theorem 2.

6. CONVERGENCE TO STABILITY
While many good algorithms exist for computing stable

matchings (Gale-Shapley being the most standard), we would
like to consider more natural dynamics for forming stable
matchings. Such dynamics are likely to occur in practice if
there were no central planner to compute a matching for the
agents, and if instead the agents tried to do what was best
for themselves in a decentralized manner. In such cases, how
likely is it that realistic algorithms yield stable outcomes?

We study the convergence properties of a particular de-
centralized partner-switching algorithm in which the vertices
on a graph are sorted randomly and then the following al-
gorithm is repeated until convergence: for each vertex, in
the sorted order, find the best partner that vertex can be
matched with. The vertex can be matched with a partner if
an edge connects them and the deviation is utility-increasing
for both the vertex and its new partner. The best partner is
the one of these that yields maximum utility for this vertex.
Add this new pair to the matching, removing any pairs that
this vertex or its new partner were previously connected to.

This algorithm captures the intuitive notion that, in a
society of agents, pairs take turns deviating from the current
matching if it is in their interest to do so. We call each
iteration through all agents a phase. Notice that instead of
iterating through all the agents in a fixed order, we could
instead pick random agents to deviate at every step, as in
[5]. None of our results change significantly in this case.

Theorem 3. This algorithm converges to a stable match-
ing after at most n phases in vertex-labeled and symmetric
edge-labeled graphs.

Proof. First we show the result for vertex-labeled graphs.
Let S be the set of nodes on one side of the matching with
maximum weight w (there can be many such nodes, since
the weights of nodes may not be distinct). Define v to be the
node from S such that after the first phase of the algorithm,
v has a partner u with the largest weight w(u).

If out of all the neighbors of v, u has the largest weight,
then the matching between v and u will always be stable
from this point until the end of the algorithm’s execution,
since v and u are each others’ highest weighted neighbors.
This means we can simply think of v and u as removed
from the graph, since they will not affect the algorithm in
future phases. Otherwise, we can assume that there exists a
neighbor u′ 6= u of v with w(u′) > w(u). When we consider
v in phase 1, v would like to connect to u′ over u. The only
reason why u′ would not be matched with v is if it were
already matched to a node v′ ∈ S. But this cannot be by
our choice of node v.

Therefore, we know that during each phase, we can remove
a pair of nodes (v, u) and their incident edges from the graph
(since this pair will always be stable and matched during
the rest of the algorithm). After at most n phases, the
resulting matching will be stable (where n can be the size of
the smaller side of the matching).

The proof of convergence for symmetric edge-labeled graphs
is similar, and is essentially the same as in [5]. Consider an
edge (u, v) of maximum weight in the graph. After the first
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Figure 7: Average number of switches the greedy al-
gorithm makes before the resulting matching is sta-
ble for vertex-labeled and symmetric edge-labeled
graphs. Note the quadratic growth for vertex-
labeled and linear growth for edge-labeled graphs.
Utilities are sampled independently from an expo-
nential distribution with mean 0.5. Results are av-
eraged over 200 runs.

phase, u will be matched with v (because u prefers v to all
its other neighbors and v prefers u to its other neighbors),
and we can remove v and u from the graph. The rest of the
argument is the same as above.

The above theorem says that the simple decentralized al-
gorithm described above converges to a stable matching in
time O(n2), since each phase takes linear time. Notice,
however, that if instead of switching to its best partner,
the agents simply switched to a random improving partner,
the same argument would guarantee convergence to a sta-
ble matching in an expected time of O(n2d), where d is the
maximum degree of the graph.

In practice (see Figure 7), on random utility distributions
similar to those described in previous section, the conver-
gence time for vertex-labeled graphs does indeed appear to
be quadratic, but it is interesting to see that the convergence
time for symmetric edge-labeled graphs seems to be linear.
We conjecture that the algorithm converges in expected lin-
ear time for these graphs, perhaps because good edges for
one node are in expectation also good for the other node in
the edge, because of the symmetric preferences.

Asymmetric edge-labeled.
While Theorem 3 guarantees convergence for the vertex-

labeled and symmetric edge-labeled utilities, this is not the
case for asymmetric edge-labeled graphs. Unfortunately, in
this case there are easy examples where this algorithm can
cycle. In our experiments, however, for small n (the number
of nodes on each side) this algorithm converged to a stable
matching on all but a small percentage of cases, showing that
the bad scenarios are not “typical.” As n gets larger, this al-
gorithm converges more and more rarely (approximately 2%
less for every additional node), with convergence essentially
non-existent for n = 70.

7. DISCUSSION
This paper explores the prices of anarchy and of stability

in matching markets. We demonstrate that even though the
price of anarchy can theoretically be high, when utilities are
randomly sampled, the loss in social welfare from strategic

behavior is limited. This result encompasses many differ-
ent graph and preference structures, and is experimentally
robust. While the downside is limited, even this downside
can be alleviated: a significant improvement in social wel-
fare can be obtained by suggesting a good matching and
requiring agents to pay small switching costs to deviate.
We show this theoretically using an algorithm for construct-
ing approximately stable matchings, and then demonstrate
that the algorithm is effective in experiments. We also show
that simple greedy partner switching algorithms can con-
verge quickly to stable matchings in some graph structures.
From a practical perspective, future work should include un-
derstanding real-world utility distributions and how they af-
fect the social outcomes of matching as compared to random
distributions of utilities. From a mechanism design perspec-
tive, it would be interesting to explore whether agents would
choose to participate in a switching-cost based, designer-
suggested matching mechanism.

Acknowledgements
The authors would like to thank an anonymous reviewer for
his comments on how to improve the paper.

8. REFERENCES
[1] A. Abdulkadiroglu, P. Pathak, and A. Roth. The New

York City High School Match. American Economic
Review, 95(2):364–367, 2005.

[2] A. Abdulkadiroglu, P. Pathak, and A. Roth.
Strategy-proofness versus Efficiency in Matching with
Indifferences: Redesigning the NYC High School
Match. American Economic Review, 2009. To appear.

[3] A. Abdulkadiroglu, P. Pathak, A. Roth, and
T. Sonmez. The Boston Public School Match.
American Economic Review Papers and Proceedings,
95(2):368–371, 2005.

[4] D. Abraham, A. Blum, and T. Sandholm. Clearing
algorithms for barter exchange markets: enabling
nationwide kidney exchanges. In Proceedings of the 8th
ACM conference on Electronic commerce, pages
295–304. ACM Press New York, NY, USA, 2007.

[5] H. Ackermann, P. Goldberg, V. Mirrokni, H. Roglin,
and B. Vocking. Uncoordinated two-sided markets. In
Proceedings of the 9th ACM Conference on Electronic
Commerce (EC), 2008.

[6] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos,
T. Wexler, and T. Roughgarden. The price of stability
for network design with fair cost allocation. In Proc.
FOCS, pages 295–304, 2004.

[7] E. Anshelevich, A. Dasgupta, E. Tardos, and
T. Wexler. Near-optimal network design with selfish
agents. In Proceedings STOC, pages 511–520. ACM
Press New York, NY, USA, 2003.

[8] A. L. Barabasi and R. Albert. Emergence of scaling in
random networks. Science, 286(5439):509–512,
October 1999.

[9] G. Becker. A Treatise On The Family. Family Process,
22(1):127–127, 1983.

[10] G. Christodoulou and E. Koutsoupias. On the Price of
Anarchy and Stability of Correlated Equilibria of
Linear Congestion Games. Lecture Notes In Computer
Science, 3669:59, 2005.



[11] S. Das and E. Kamenica. Two-sided bandits and the
dating market. In Proc. IJCAI, pages 947–952,
Edinburgh, UK, August 2005.

[12] M. Dawande, S. Kumar, V. Mookerjee, and
C. Sriskandarajah. Maximum Commonality Problems:
Applications and Analysis. Management Science,
54(1):194, 2008.

[13] D. Gale and L. S. Shapley. College admissions and the
stability of marriage. The American Mathematical
Monthly, 69(1):9–15, 1962.

[14] M. Goemans, L. Li, V. Mirrokni, and M. Thottan.
Market sharing games applied to content distribution
in ad hoc networks. IEEE Journal on Selected Areas
in Communications, 24(5):1020–1033, 2006.

[15] N. Immorlica and M. Mahdian. Marriage, Honesty,
and Stability. In Proceedings of the Sixteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, 2005.

[16] R. Irving, P. Leather, and D. Gusfield. An efficient
algorithm for the ”optimal” stable marriage. Journal
of the ACM (JACM), 34(3):532–543, 1987.

[17] B. Jovanovic. Job Matching and the Theory of
Turnover. The Journal of Political Economy,
87(5):972, 1979.

[18] V. Mirrokni. Approximation Algorithms for
Distributed and Selfish Agents. PhD thesis,
Massachusetts Institute Of Technology, 2005.

[19] S. Mongell and A. Roth. Sorority Rush as a
Two-Sided Matching Mechanism. American Economic
Review, 81(3):441–464, 1991.

[20] A. Roth and J. Vande Vate. Random Paths to
Stability in Two-Sided Matching. Econometrica,
58(6):1475–1480, 1990.

[21] A. E. Roth and E. Peranson. The redesign of the
matching market for American physicians: Some
engineering aspects of economic design. American
Economic Review, 89(4):748–780, 1999.

[22] A. E. Roth and M. Sotomayor. Two-Sided Matching:
A Study in Game-Theoretic Modeling and Analysis.
Econometric Society Monograph Series. Cambridge
University Press, Cambridge, UK, 1990.

[23] A. E. Roth and X. Xing. Jumping the gun:
Imperfections and institutions related to the timing of
market transactions. The American Economic Review,
84(4):992–1044, 1994.

[24] A. Schulz and N. Moses. On the performance of user
equilibria in traffic networks. In Proceedings of the
14th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 86–87, 2003.

[25] R. Thaler and C. Sunstein. Nudge. Yale University
Press, 2008.

[26] D. Watts and S. Strogatz. Collective dynamics of
’small-world’ networks. Nature, 393(6684):440–442,
1998.


