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Abstract

In this paper, we explore the connection between the DENSEST k-SUBGRAPH (DkS) problem and
MINREP. Both have been widely conjectured to be hard to approximate to within a sub-polynomial factor
and these assumptions have been used as a basis to show hardness for a variety of problems. However,
establishing such hardness for the DENSEST k-SUBGRAPH problem and MINREP seems out of reach
of current techniques, even assuming other strong complexity conjectures, such as ETH. Additionally,
it is not known even if either of these conjectures implies the other. We show that a generic technique
can transform many proofs of MINREP-hardness into proofs of DkS hardness, up to polynomial factors.
Additionally, we show that MINREP is (up to polynomial factors) at least as hard to approximate as
DENSEST k-SUBGRAPH with Perfect Completeness. As a corollary of recent work by Manurangsi, this
establishes an n1/poly loglogn hardness for MINREP, assuming ETH.

1 Introduction

Understanding the approximation complexity of optimization problems is an important goal in theoretical
computer science. The challenge here is to establish hardness results for optimization problems (assuming
P 6= NP and close variants) that match the performance of the best known approximation algorithms. While
there have been many successes in this realm, obtaining tight upper and lower bounds for several problems
of interest has proved to be elusive. In order to better map the complexity landscape and understand the
relationships between seemingly hard optimization problems, researchers have introduced additional hardness
assumptions beyond P 6= NP, e.g., Khot’s Unique Games Conjecture [27].

In this paper, we explore the connection between two optimization problems: DENSEST k-SUBGRAPH

(DkS) and MINREP. Both have embarrassingly large gaps between upper and lower bounds. Both have been
widely conjectured to be hard to approximate to within a sub-polynomial factor; these assumptions have been
used as a basis to show hardness for a variety of optimization problems of interest. However, establishing
such hardness for DkS and MINREP seems out of reach of current techniques, even assuming other strong
complexity conjectures such as the Exponential-Time Hypothesis (ETH) [25]. Presently, it is not known even
if either of these conjectures implies the other.

The starting point for our work is attempting to explain the intriguing observation that there seems to be a
connection between the two: In many instances in the literature, MINREP-hard problems appear to be DkS-
hard. Examples include the minimum rainbow subgraph problem studied by Tirodkar and Vishwanathan [38],
and k-steiner forest [24] (for which MINREP-hardness was established by Antonakopoulos and Kortsarz [3]).
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Our Results

In Section 3, we show that a generic technique can transform many proofs of MINREP-hardness into proofs
of DkS hardness, up to polynomial factors. We introduce the k-MINREP problem, a natural generalization
of MINREP, and establish hardness of this problem based on DkS. Further, we show that many problems
previously shown to be MINREP-hard are, in fact, k-MINREP-hard. This immediately implies DkS-hardness
for several problems such as, TARGET SET SELECTION (TSS), MONOTONE MINIMUM (CIRCUIT) SAT-
ISFYING ASSIGNMENT (MMSA/ MMCSA) and DEPENDENCY MIN MIDDLEBOX NODE PURCHASE

(DMMNP), a problem that arises in middlebox optimization in software defined networking.
We then show, in Section 4, that MINREP is (up to polynomial factors) at least as hard to approximate

as Densest k-Subgraph with Perfect Completeness (DkSC). As a corollary of a recent breakthrough by
Manurangsi [32], this establishes an n1/poly loglogn hardness for MINREP, assuming ETH. This reduction
immediately implies n1/poly loglogn ETH hardness for any MINREP-hard problem, improving on the previous
bound of 2log1−ε n.

Related Work

Kortsarz introduced MINREP (a variant of LABELCOVER, both defined fully in Section 2) as a useful problem
to reason about the hardness of approximating k-spanners [29].

The best approximation for DkS obtains an O(n1/4+ε)-approximation in nO(1/ε) time [8]. The problem
has been conjectured to be hard to within polynomial factors by several authors [4, 6, 16, 17]. Feige [22]
showed constant-factor hardness for the problem, assuming that random 3-SAT instances are hard to refute.
Khot [28] showed constant-factor hardness, assuming that NP is not contained in subexponential time. Alon
et al. [2] ruled out any constant-factor approximation, assuming that random k-AND formulas are hard to
refute. Raghavendra and Steurer [36] ruled out any constant-factor approximation, based on a strengthened
version of the Unique Games conjecture. Braverman et al. [10] ruled out any constant-factor approximation
by an nÕ(logn) time algorithm, assuming ETH. A remarkable recent result of Manurangsi [32] established an
n−1/poly loglogn hardness for DkSC, assuming ETH.

In fact, MAXREP, a problem closely related to MINREP, has previously been shown to be DkS-hard [11].

2 Preliminaries

The results in this paper rely on careful consideration of several labelling/covering problems, designed to
model Probabilistically Checkable Proofs and Interactive Proof systems [18]. A family of related prob-
lems, LABELCOVER, MAXREP, and MINREP, were introduced to explain the hardness of several other
optimization problems, initially those on lattices [5], later on graph k-spanners [29]. In their categorization
of problems by hardness of approximation [7], Arora and Lund refer to LABELCOVER-hard problems as
Category III: hard to approximate within O(2log1−γ

n), for all fixed γ > 0, unless NP problems can be solved
in quasi-polynomial time (2poly logn time).

Subsequently, the list of problems that have been proven LABELCOVER-hard is vast. Although Dinur and
Safra showed how to obtain NP-hardness for a variant of LABELCOVER within a factor of 2(logn)1−1/(log logn)c

,
no version of LABELCOVER has to date been proven inapproximable to within a polynomial, 1/nε , fac-
tor. The belief that LABELCOVER admits polynomial hardness is known as the PROJECTION GAMES

CONJECTURE [33].
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2.1 Min and Max Rep

To define MINREP and MAXREP, we follow the style of Charikar, Hajiaghayi, and Karloff [11]. For either
problem, we are given as input a bipartite graph G = (A,B;E), with A and B partitioned into equal-sized sets
(A1,A2, . . . ,Am) and (B1,B2, . . . ,Bm), respectively. We regard the sets Ai the sets B j as supervertices, and we
say that the pair Ai and B j induce a superedge if and only if there exists an ai′ ∈ Ai and b j′ ∈ B j such that
(ai′ ,b j′) ∈ E. Thus, the family of superedges partition E.

The MINREP question asks: “What is the minimum-size set of vertices for which the induced bipartite
subgraph contains at least one edge for every superedge in the graph?” That is, what is the minimum number
of vertices so that every superedge is covered?

In contrast, the MAXREP question asks “If exactly one vertex is chosen from each supervertex, what is
the maximum number of superedges that can be covered?” Charikar et al. observe that without the restriction
of one vertex per set, MAXREP is essentially DENSEST-2κ SUBGRAPH with κ vertices on each side of the
bipartition.

2.2 Label Cover

In the original LABELCOVER problem [5], there was an antisymmetry between A and B. Specifically, in
LABELCOVERmin, the superedge (Ai,B j) is “covered” if and only if every selected b j′ ∈ B j has some adjacent
selected ai′ ∈ Ai. Recall that in MINREP, we only needed one matched pair to be selected to cover the
superedge.

For the maximization version of the original LABELCOVER problem, this is no variation, as there is only
one ai′ and one b j′ chosen from each supervertex anyway. Dinur and Safra [19] point out that the original
LABELCOVER problem of Arora et al. [5] had the additional restriction that each vertex in A has degree one,
and the “supervertices” all have the same “superdegree”. Without this restriction, they state that it is unclear
whether reductions to certain “lattice” problems follow.

Kortsarz identifies an O(npoly logn)-time reduction from SATISFIABILITY in which NO instances cover
only a fraction 2− log1−γ n superedges of a MAXREP instance, while YES instances cover them all [29]. He
thence provides a reduction to MINREP with essentially the same approximation hardness.

Peleg [35] and Elkin and Peleg [21] introduced O(
√

n) approximation algorithms for MAXREP and MIN-
REP. These were thought perhaps to be optimal until Charikar et al. introduced factor-O(n1/3) and Õ(n1/3)
algorithms, respectively. In contrast, the problem of interest in this paper, DkS (defined below), admits a
factor-O(n1/4+ε) algorithm, running in O(n1/ε) time.

2.3 DkS Hardness

The DENSEST k-SUBGRAPH problem (DkS) asks: given a graph G and integer k, find a subset S⊆V (G) of
k vertices, S, such that |E(G)∩S×S| is maximized. This problem is conjectured to be hard to approximate
to some polynomial factor [6, 9, 30].

We also consider an important special case of DkS, DENSEST k-SUBGRAPH WITH PERFECT COM-
PLETENESS, which we denote by DkSC. Here, YES-instance graphs are promised to contain a k-clique. The
gap version of DkSC, in which NO-instances are promised to contain no k-vertex subgraph with more than
β
(k

2

)
edges, is denoted DkSC[1,β ]. Manurangsi [31] showed that this problem admits no polynomial time

algorithm, even with β = O(n−1/poly loglogn), unless NP⊆ DTIME
(

2Õ(n3/4)
)

. When β = Ω(nε), Bhaskara

et. al. (implicitly) provide an algorithm for DkSC[1,β ] with running time O(n1/ε) [9].
The SMALLEST k-EDGE SUBGRAPH problem (SkES), first explicitly defined by Chlamtac, Dinitz, and

Krauthgamer [16], is as follows. Given a graph G and integer k, determine the smallest r for which there
exists a subset R⊆V (G) of r vertices whose induced subgraph contains at least k edges. As Chlamtac et al.

3



point out, Nutov’s results on the hardness of approximating Node-Weighted Steiner Network [34] imply that
if DkS is α(n)-hard to approximate, then SkES is O(

√
α(n)) hard.

2.4 Problems Discussed

We now describe the various problems whose DkS-hardness will be shown in Section 3.

TARGET SET SELECTION (TSS) Motivated by work of Domingos and Richardson [20, 37], Kempe,
Kleinberg, and Tardos [26] studied the following model of influence propagation in social networks. Chen
showed this problem to be MINREP-hard to approximate [14]; in previous work, we showed that it is
somewhat harder to approximate under a conjecture regarding the average-case hardness of DkS [13].

The input is a graph G = (V,E) along with a threshold function τ : V → Z+. Vertices in this graph can be
either active or inactive. Given a seed set of initially activated vertices, influence proceeds in a sequence
of rounds. A previously inactive vertex v becomes active in a particular round whenever at least τ(v) of its
neighbors were active in the previous round. Once a vertex becomes active, it remains active in all subsequent
rounds. The objective is to find the smallest-cardinality seed set such that every vertex in V eventually
activates. (For the process to continue, there must be at least one new active vertex in each round, so there are
at most n−1 rounds.)

MONOTONE MINIMUM (CIRCUIT) SATISFYING ASSIGNMENT (MMSA/ MMCSA) The MONO-
TONE MINIMUM SATISFYING ASSIGNMENT class of problems was first introduced by Alekhnovich et
al. [1] and Goldwasser and Motwani [23]. Inputs to these problems consist of either a monotone formula
(in MMSA) or a monotone circuit (in MMCSA) on a set {xi} of inputs1. The goal is to find the smallest
minterm of the formula or circuit, i.e., the smallest collection of inputs such that the formula/circuit evaluates
to True even when when all other inputs are set to False. It was previously shown that these problems
are LABELCOVERmin-hard to approximate even for bounded-depth circuits [1, 23]. The hardness of these
problems has, in turn, been used as a starting point for other lower bounds [15]. As MMSA is a special case
of MMCSA, a hardness result shown for MMSA translates to equivalent hardness for MMCSA.

DEPENDENCY MIN MIDDLEBOX NODE PURCHASE (DMMNP) In the DEPENDENCY MIN MIDDLE-
BOX NODE PURCHASE problem, first introduced by Charikar et al [12], we are asked to distribute sufficient
processing power in a network so that packets sent between terminals can each be processed along the
way. The problem is formally described as follows. We are given an edge-capacitated graph, as well as a
nonnegative price pi and nonnegative potential capacity ci (which might be ∞) for each vertex vi. At our
discretion, we may spend pi to purchase exactly ci units of processing capacity at node vi. Otherwise, vi has
0 processing capacity.

Additionally, we are given a set of demands, each of which consists of a source si, a sink ti, and an
intermediate sequence of processing-vertex subsets A1

i ,A
2
i , . . .. These denote which vertices are allowed to

execute each of a sequence of processing tasks on the packets as they are routed from si to ti.
For each demand di, we must route one unit of flow along a walk from its source to some vertex in A1

i
(which we call its first stop), then to some vertex in A2

i (its second stop), and so on, and finally route it to its
sink, ti. Each time the flow stops at a node, it consumes one unit of that node’s processing power.

A flow is feasible if, aggregated over all walks, (i) no edge is traversed more times than its capacity and
(ii) no vertex is chosen as a stopping vertex more times than its purchased processing capacity. The goal is

1Monotone here means that the formula or circuit is computed using only a polynomial number of ∧ and ∨ gates. In constrast,
Umans [39] shows that the circuit problem is n1−ε -hard to approximate (unless NP⊆ QuasiP) when the circuit can use also use ¬
gates internally, despite computing a monotone function.
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then to purchase a minimal-spend subset of nodes at which to place processing capacity so that there exists a
feasible flow.

2.5 Notation

Many of the reductions in this paper only show that two problems are polynomially related. In particular,
they show that if PROBLEM A has an f (n)-approximation algorithm, then PROBLEM B admits an O( f (n)c)
approximation, for some constant c, (or, conversely, g(n)-hardness for PROBLEM B implies O(g(n)1/c)-
hardness for PROBLEM A). Thus, if PROBLEM B is assumed (or known) to have no approximation algorithm
with a sub-polynomial guarantee, then the same must hold for PROBLEM A. We denote such a relationship
PROBLEM B�p PROBLEM A. For example, the last paragraph of Section 2.3 implies that DkS�p SkES.

3 DkS hardness for MinRep-hard Problems

The starting point for all of our reductions will be the k-MINREP problem, a natural generalization of
MINREP (see Section 2.1). As in MINREP, we are given a bipartite graph G = (A,B;E), with A and B
partitioned into supervertices {Ai}s and {B j}s, respectively. As an additional input to the problem, we are
given an integer k. Using the same definition of a superedge as before, our goal is to find the smallest subset
S⊆V such that the edges induced by S belong to at least k different superedges. The decision version asks,
for some integer `, whether or not there exists a feasible solution of size no more than `.

Indeed, the MINREP problem is simply k-MINREP with k equal the number of superedges in G; k-
MINREP is hence MINREP-hard. As it turns out, the hardness of k-MINREP is also polynomially-related to
that of DkS.

Theorem 3.1. DkS�p k-MINREP

Proof. As discussed in Section 2.3, DkS�p SkES. It thus suffices to show that SkES�p k-MINREP. We
show this via a direct reduction: given an instance (G(V,E);k) of SkES, we choose a random bipartition
of V into A and B by placing each vertex in A independently with probability 1/2, and in B otherwise. The
k-MINREP instance returned comprises the bipartition (A,B), those edges in E that cross the bipartition, and
one supervertex for each vertex in V .

For a subset S⊆V of size k, let v1(S) be the objective value of S for the given SkES instance, and v2(S) be
the objective value of S under the constructed k-MINREP instance. Clearly, v2(S)≤ v1(S), as covering an edge
coincides with covering a unique superedge. Additionally, by the random construction, E[v2(S)] = v1(S)/2,
and, by a standard application of the Chernoff bound, with high probability, v2(S) ≥ v1(S)/3. Thus, the
two problems differ only by a constant factor in their objective scores for every set S, meaning that the two
problems are polynomially related.

We now proceed to show that various problems previously shown to be MINREP hard are, in fact,
k-MINREP-hard, and thus (as a consequence of Theorem 3.1), have a hardness polynomially related to that
of DkS.

3.1 TARGET SET SELECTION

In this section, we show how a simple modification to Chen’s result [14] that MINREP�p TSS leads to
k-MINREP-hardness for TSS.

Theorem 3.2. k-MINREP�p TARGET SET SELECTION
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Proof. A slightly simplified presentation of Chen’s result [14] is as follows. Given an instance G=((A,B);E)
of MINREP, let S denote the set of superedges. We construct a graph with four layers:

1. A vertex layer, V1, with one threshold-n vertex v1
u for each vertex u ∈ A∪B.

2. An edge layer, V2, with one threshold-2 vertex v2
e for each edge e ∈ E.

3. An superedge layer, V3, with one threshold-1 vertex v3
s for each superedge s ∈ S.

4. A final layer, V4, with one threshold-|S| vertex v4
u for each vertex u ∈ A∪B.

Using directed-edge gadgets (this gadget simulates a single directed edge with several undirected edges,
as in [13]) we connect the layers as follows.

• Each vertex v1
u ∈V1 has a directed edge to every vertex v2

e ∈V2 such that edge e is incident on u.

• Each vertex v2
e ∈V2 has a directed edge to the vertex v3

s such that edge e is in superedge s.

• Each vertex v3
s ∈V3 has a directed edge to every vertex in V 4.

• Each vertex v4
u ∈V4 has a directed edge to every vertex in V 1.

If we activate exactly the vertices from V1 corresponding to a feasible solution to the given MINREP

instance, we easily verify that they activate all vertices in V2 corresponding to edges in their induced subgraph,
in turn activating all vertices in V3 corresponding to covered superedges, and then activating all of V4. Once
all of V4 is activated, the activation of all of V1, V2, and V3 follows in subsequent rounds. He now proves the
following:

Claim 3.3 (essentially from Chen [14]). There exists a 2-approximation to the optimal solution that contains
only vertices from V1. Consequently, MINREP�p TARGET SET SELECTION.

First, it can be shown without loss of generality that no vertices from the directed-edge gadgets are picked.
Next, it never helpful to activate a proper subset of V4: only V4 as a whole can activate other vertices, and
the graph structure insures that the spreading process influences all vertices of V4 identically. Next, with
threshold 1 the choice of a vertex from V 3 is dominated by the choice of one of its in-neighbors in V 2. Finally,
the choice of a vertex in V 2 is in turn dominated (up to a factor two) by choosing both of its in-neighbors in
V 1, proving the first part of the claim. Since the graph constructed contains polynomially many vertices, the
second part of the claim follows.

To convert this into k-MINREP hardness, we can simply change the threshold of vertices in V 4 from |S|
to k. These final-layer vertices become active if and only if at least k superedges are covered, as opposed to
all |S| superedges, required for Chen’s construction. Thus, with the analysis proceeding exactly as before, we
can conclude that k−MINREP�p TSS.

Combining this with Theorem 3.1, DkS hardness for TSS follows immediately.

Corollary 3.4. DkS�p k-MINREP�p TARGET SET SELECTION.
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3.2 MONOTONE MINIMUM (CIRCUIT) SATISFYING ASSIGNMENT

We now show how to convert previous proofs that LABELCOVERmin�p MMSA into k-MINREP (and, thus,
DkS) hardness for MMSA.

Theorem 3.5. k-MINREP�p MMSA�p MMCSA

Proof. Previously, it was proven that MMSA is polynomially related to LABELCOVERmin [1, 23]. Although
LABELCOVERmin is slightly different from MINREP, these previous approaches can be directly adapted to
MINREP. Given a MINREP instance G((A,B);E), the input layer to the circuit consists of vertices in A∪B.
For each edge e ∈ E, we add one ∧ gate, ∧e, that takes as input the two inputs corresponding to its endpoints.
For each superedge s, we add an ∨ gate, ∨s, that takes as input all ∧e gates for which e is part of superedge s.
Finally, we add one more ∧ gate ∧out whose input comprises every ∨s gate.

This circuit evaluates to True if and only if the True inputs correspond to a set of vertices that collectively
cover all superedges. Thus, the optimal objective value for this problem is exactly that of the original MINREP

instance. Because the number of gates produced is poly(n), the hardness of MMSA remains polynomially
related to that of MINREP, regardless of whether we the “n” in an f (n)-approximation factor refers to the
number of inputs or to the number of gates in the circuit.

To convert this construction into one for k-MINREP, we replace ∧out with a monotone threshold-k circuit.
Thus, this circuit simulates the requirement that only k of the superedges need to be covered. As such
threshold circuits can be constructed with only polynomially many internal gates [40], we conclude that
MMSA is polynomially related to k-MINREP.

Combining this with Theorem 3.1, we obtain the following corollary.

Corollary 3.6. DkS�p k-MINREP�p MMSA�p MMCSA .

3.3 Middlebox Allocation

We now modify the result of Charikar et al. [12], translating its MINREP-hardness for DEPENDENCY MIN

MIDDLEBOX NODE PURCHASE into k-MINREP hardness.
Their reduction from MINREP proceeds as follows. For each supervertex in A or B, the graph has

one corresponding node (ai or bi, respectively) as well as one node v j for each of the (constituent) vertices.
Capacity-1 arcs are added from each ai (supervertex) node to the {vk}s representing nodes in Ai, as well as
from each {vk} ∈ B to the bi corresponding to its containing supervertex. Purchasing (infinite) processing
capacity is free at the {ai}s and {bk}s, but comes at a cost of 1 at the {vk}s.

Finally, we add two vertices s and t – the first with an infinite-capacity arc to each ai and the second with
an infinite-capacity arc from every bk. For each superedge (Ai,Bk), we add one unit of demand from s to
t specifying that the flow must be processed at both ai and bk. It is not hard to verify that the problem of
placing processing at the vi nodes exactly corresponds to selecting vertices in the source MINREP instance,
thus establishing the hardness.

To convert this into hardness for k-MINREP, we add two additional nodes, q1 and q2. There is an
unbounded-capacity arc from s to q1 and an unbounded-capacity arc from q2 to t, and q1 is linked to q2 with
an arc of capacity (|S|− k). Unlimited processing capacity can be purchased at either q1 or q2 for free. We
now modify the demands so that each unit of flow can be processed either by its original required pair (ai and
b j) or by q1 and q2.

This construction allows for |S|− k units of the demand to get processed for free via the path s→ q1→
q2→ t, meaning that only k units of the demand must be processed as the original construction intended.
Thus, the problem is now equivalent to that of solving k-MINREP, giving the desired hardness.

Theorem 3.7. DkS�p k-MINREP�p DMMNP .
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4 DkSC hardness for MINREP

We initiate this section with a lemma that will later be helpful in showing that DkSC�p MINREP.

Lemma 4.1. Let G be a graph in which every k-vertex subgraph has at most s induced edges. Every subgraph
of G containing at least t ≥ s induced edges must have more than (k−1)

√
t/s vertices.

Proof. LetR be an r-vertex subgraph of G containing at least t induced edges. Clearly, r ≥ k. Now let K be
a k-vertex induced subgraph ofR chosen by selecting a uniformly random sample of k vertices fromR. For
every edge (u,v) ∈ R, the probability that it also appears in K is the probability that both of its endpoints
survived the sampling process. Namely,

Pr[(u,v) ∈ K] = Pr[u ∈ K∧ v ∈ K] = Pr[u ∈ K] ·Pr[v ∈ K | u ∈ K] = k
r ·

k−1
r−1 > (k−1)2

r2 .

By linearity of expectations, E[# edges in K]> t(k−1)2/r2. However, since a k-vertex subgraph ofR has at
most s induced edges, s≥ E[# edges in K]. Combining the two inequalities, s > t(k−1)2/r2, and, solving
for r, we get r > (k−1)

√
t/s.

With this lemma in hand, we can proceed to prove that MINREP’s hardness is polynomially related to
that of the parameterized version of DkSC.

Theorem 4.2. If there is an α-approximation algorithm for MINREP (with α > 1), then there exists a
randomized algorithm for DkSC[1,β ] whenever β < 1/(9α2). In particular, DkSC�p MINREP.2

Proof. To simplify the presentation of the proof, we make the benign assumption that the number of vertices
is evenly divisible by 6logn. Similar analysis carries through when this is not the case.

The construction here is similar to that of Theorem 6 from [11], but the analysis is different. Given an
instance (G(V,E),k) of DkSC[1,β ], we partition V uniformly at random into k′ = k/(3logn) groups so that
each has size at least (3n/k) logn.
We now construct a MINREP instance as follows:

• The first k′/2 groups become the left supervertices A1,A2, · · · ,Ak′/2, while the the remaining k′/2
groups become the right supervertices B1,B2, · · · ,Bk′/2.

• The edges in the construction are those edges of G that cross the bipartition, i.e., {(u,v) ∈ E : u ∈⋃
i Ai∧ v ∈

⋃
j B j}.

If G is a YES instance of DkSC[1,β ], then it contains a k-clique. The partitioning scheme above ensures
that, with high probability, each supervertex contains at least 1 vertex of this clique. Thus, every (Ai,B j) pair
induces at least one superedge with high probability. Consequently, the optimal objective value is exactly k′

with high probability, as picking one vertex in each partition is necessary to cover all superedges, but picking
exactly one clique vertex from each partition is sufficient.
However, if G came from a NO instance, then one of two things can happen:

1. The constructed MINREP instance is missing some superedge (that is, some (Ai,B j) supervertex pair
does not induce a superedge); or

2. The constructed MINREP instance has all k′2/4 potential superedges.

2To keep the analysis simpler, no attempt was made to lower the factor of 9 in the bound on β .
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In the first case, we can immediately identify that with high probability the input graph came from a NO
instance of DkSC and return accordingly. Thus, we focus our attention on the optimal objective values of NO
instances in which all superedges are present.

Such an instance can be identified as a NO instance when its optimal objective value is greater than αk′:
Applying the factor-α approximation algorithm to MINREP would reveal that the optimal objective value
exceeds k′, hence, with high probability, that of a YES instance.

To figure out which values of β necessitate imply this αk′ lower bound on OPT, we appeal to Lemma 4.1.
A feasible solution to the problem must cover all k′2/4 superedges, and thus the subgraph induced by the
solution must contain at least k′2/4 edges.

However, the promise problem we are solving, DkSC[1,β ], guarantees that no k-vertex subgraph, k =
3k′ logn, contains more than β

(k
2

)
≤ βk2 = 9βk′2 log2 n edges. Applying Lemma 4.1 with t = k′2/4, s =

9βk′2 log2 n, and k = 3k′ logn, we see that a subgraph inducing k′2/4 edges (and, in particular, the smallest
one) has at least

(3k′ logn−1)

√
k′2/4

9βk′2 log2 n
=

3k′ logn−1

6
√

β logn
>

k′

3
√

β

vertices. Thus, we have the sought αk′ lower bound on the optimal objective value whenever α < 1/(3
√

β )
or, equivalently, whenever β < 1/(9α2).

Combining Theorem 4.2 with the recent result of Manurangsi [31] that, assuming ETH, DkSC is hard to
approximate to within an O(n1/poly loglogn) factor, we get the following result on the hardness of MINREP.

Theorem 4.3. For some constant c, MINREP has no O(n1/ log logc n)-approximation algorithm unless NP⊆
DTIME

(
2Õ(n3/4)

)
.
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[5] Sanjeev Arora, László Babai, Jacques Stern, and Z. Sweedyk. The hardness of approximate optima in
lattices, codes, and systems of linear equations. Journal of Computer and System Sciences, 54(2):317–
331, 1997.

[6] Sanjeev Arora, Boaz Barak, Markus Brunnermeier, and Rong Ge. Computational complexity and
information asymmetry in financial products. In ICS, pages 49–65, 2010.

[7] Sanjeev Arora and Carsten Lund. Hardness of approximations. In Dorit S. Hochbaum, editor, Approxi-
mation Algorithms for NP-hard Problems, chapter 10. PWS, 1997.

[8] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vijayaraghavan. Detect-
ing high log-densities: an O(n1/4) approximation for densest k-subgraph. In STOC, pages 201–210,
2010.

9



[9] Aditya Bhaskara, Moses Charikar, Aravindan Vijayaraghavan, Venkatesan Guruswami, and Yuan Zhou.
Polynomial integrality gaps for strong SDP relaxations of densest k-subgraph. In SODA, pages 388–405,
2012.

[10] Mark Braverman, Young Kun Ko, Aviad Rubinstein, and Omri Weinstein. ETH hardness for densest-k-
subgraph with perfect completeness. In SODA, pages 1326–1341, 2017.

[11] Moses Charikar, MohammadTaghi Hajiaghayi, and Howard Karloff. Improved approximation algo-
rithms for label cover problems. Algorithmica, 61(1):190–206, 2011.

[12] Moses Charikar, Yonatan Naamad, Jennifer Rexford, and X. Kelvin Zou. Multi-commodity flow with
in-network processing, submitted.

[13] Moses Charikar, Yonatan Naamad, and Anthony Wirth. On approximating target set selection. In
APPROX, pages 4:1–4:16, 2016.

[14] Ning Chen. On the approximability of influence in social networks. SIAM Journal on Discrete
Mathematics, 23(3):1400–1415, 2009.

[15] Ramkumar Chinchani, Duc Ha, Anusha Iyer, Hung Q. Ngo, and Shambhu Upadhyaya. On the hardness
of approximating the Min-Hack problem. Journal of Combinatorial Optimization, 9(3):295–311, 2005.

[16] Eden Chlamtac, Michael Dinitz, and Robert Krauthgamer. Everywhere-sparse spanners via dense
subgraphs. In FOCS, pages 758–767, 2012.
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