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ABSTRACT
How should we split data among the nodes of a distributed
data warehouse in order to boost performance for a fore-
casted workload? In this paper, we study the effect of
different data partitioning schemes on the overall network
cost of pairwise joins. We describe a generally-applicable
data distribution framework initially designed for Amazon
Redshift, a fully-managed petabyte-scale data warehouse in
the cloud. To formalize the problem, we first introduce the
Join Multi-Graph, a concise graph-theoretic representation
of the workload history of a cluster. We then formulate
the “Distribution-Key Recommendation” problem – a novel
combinatorial problem on the Join Multi-Graph– and relate
it to problems studied in other subfields of computer sci-
ence. Our theoretical analysis proves that “Distribution-Key
Recommendation” is NP-complete and is hard to approxi-
mate efficiently. Thus, we propose BaW, a hybrid approach
that combines heuristic and exact algorithms to find a good
data distribution scheme. Our extensive experimental eval-
uation on real and synthetic data showcases the efficacy of
our method into recommending optimal (or close to optimal)
distribution keys, which improve the cluster performance by
reducing network cost up to 32x in some real workloads.
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1. INTRODUCTION
Given a database query workload with joins on several re-

lational tables, which are partitioned over a number of ma-
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chines, how should we distribute the data to reduce network
cost and ensure fast query execution?

Amazon Redshift [12, 2, 3] is a massively parallel process-
ing MPP database system, meaning that both the storage
and processing of a cluster is distributed among several ma-
chines (compute nodes). In such systems, data is typically
distributed row-wise, so that each row appears (in its en-
tirety) at one compute node, but distinct rows from the same
table may reside on different machines. Like most commer-
cial data warehouse systems, Redshift supports 3 distinct
ways of distributing the rows of each table:
• “Even” (= uniform/random), which distributes the rows

among compute nodes in a round-robin fashion;
• “All” (= replicated), which makes full copies of a database

table on each of the machines;
• “Dist-Key” (=fully distributed = hashed), which hashes

the rows of a table on the values of a specific attribute
known as distribution key (DK).
In this work, we focus on the latter approach. Our pri-

mary observation is that, if both tables participating in a
join are distributed on the joining attributes, then that join
enjoys great performance benefits due to minimized network
communication cost. In this case, we say that the two tables
are collocated with respect to the given join. The goal of this
paper is to minimize the network cost of a given query work-
load by carefully deciding which (if any) attribute should be
used to hash-distribute each database table.

Figure 1 illustrates collocation through an example. Con-
sider the schema of Figure 1(a) and the following query Q1:

-- query Q1

SELECT *

FROM Customer JOIN Branch

ON c_State = b_State;

With the records distributed randomly (“Even” distribu-
tion style) as in Figure 1(b), evaluating Q1 incurs very high
network communication cost. In particular, just joining the
red “CA” rows of ‘Customer’ from Node 1 with the corre-
sponding “CA” rows of ‘Branch’ from Node 2 requires that
at least one of the nodes transmits its contents to the other,
or that both nodes transmit their rows to a third-party node.
The same requirement holds for all states and for all pairs
of nodes so that, ultimately, a large fraction of the database
must be communicated in order to compute this single join.
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(b) “Even” distribution.
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(c) “Dist-Key” distribution
on State attribute.
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Figure 1: BAW wins. (a-c) Data distribution is im-
portant: visually, “Dist-Key” needs less communi-
cation, for the Join on State, when tables are spread
over m nodes. (d) Our method BAW makes al-
most all TPC-DS queries faster, up to 18x (execu-
tion times of “Even” vs proposed BAW in seconds).

This is in stark contrast with Figure 1(c), in which all
“CA” rows are on Node 1, all “NE” rows are on Node 2, and
so on. This is the best-case scenario for this join, in that
no inter-server communication is needed; all relevant pairs of
rows are already collocated and the join can be performed lo-
cally at each compute node. This ideal setup happens when-
ever the distribution method “Dist-Key” is chosen for both
tables, and the distribution key attributes are chosen to be
Customer.c State and Branch.b State respectively, hashing
all records with matching state entries to the same compute
node. This yields significant savings in communication cost,
and in overall execution time.

1.1 Informal problem definition
The insight that collocation can lead to great savings in

communication costs raises a critical question: How can we
achieve optimal data distribution in the face of multiple ta-
bles each participating in multiple joins, which may or may
not impose conflicting requirements? We refer to this as
the “Distribution-Key Recommendation” problem. Our so-
lution, Best of All Worlds (BaW), picks a distribution
key for a subset of the tables so to maximally collocate the
most impactful joins.

Figure 1 (d) illustrates the query performance of the TPC-
DS [19] queries (filled circles, in the scatter-plot) loaded on
a Redshift cluster. The x-axis (resp. y-axis) corresponds
to the query execution time in seconds for the BaW (resp.
“Even”) distribution. BaW consistently performs better,
and rarely ties: most points/queries are above the diagonal,
with a few on or below the diagonal1. For some queries, like
q, the savings in performance reach 18x (axes on log scale).

1The lone datapoint significantly below the diagonal is fur-
ther discussed in Section 6.2.

Despite the importance of the problem, there have been
few related papers from the database community. The ma-
jority of related methods either depend on a large number
of assumptions that are not generally satisfied by most com-
mercial data warehouse systems, including Amazon Red-
shift, or provide heuristic solutions to similar problems. To
the best of our knowledge, this work is the first to propose
an efficient, assumption-free, purely combinatorial, provably
optimal data distribution framework based on the query
workload. Furthermore, our method, BaW, is applicable to
any column store, distributed, data warehouse. It is stan-
dalone and does not require any change in the system’s ar-
chitecture.

The contributions of the paper are:
• Problem formulation: We formulate the “Distribution-

Key Recommendation” (DKR) problem, as a novel graph
theoretic problem and we show its connections to graph
matching and other combinatorial problems. Also, we in-
troduce the Join Multi-Graph, a concise and light-weight
graph-theoretic representation of the join characteristics
of a cluster.
• Theoretical Analysis: We analyze the complexity of

DKR, and we show it is NP-complete.
• Fast Algorithm: We propose BaW, an efficient meta-

algorithm to solve DKR; BaW is extensible, and can ac-
commodate any and every optimization sub-method, past
or future.
• Validation on real data: We experimentally demon-

strate that the distribution keys recommended by our
method improve the performance of real Redshift clusters
by up to 32x in some queries.
The rest of the paper is organized as follows. Section 2 sur-

veys the related work. Section 3 introduces the Join Multi-
Graph and mathematically formulates the “Distribution-Key
Recommendation” problem (DKR). Section 4, presents a
theoretical analysis of DKR and proves its complexity. Sec-
tion 5 proposes BaW, an efficient graph algorithm to solve
DKR. Section 6 contains an extensive experimental eval-
uation of our method on real and synthetic datasets, on
Amazon Redshift. Lastly, Section 7 concludes the paper.

2. BACKGROUND AND RELATED WORK
This section starts with an overview of previous papers on

workload-based data partitioning. Then, it describes related
graph problems motivating our BaW algorithm.

2.1 Data partitioning
Workload-based data partitioning has been well studied

from various perspectives, including generation of indices
and materialized views [1], partitioning for OLTP workloads
[5, 21, 23], and others. However, our main focus here is data
partitioning in OLAP systems such as Amazon Redshift.
There have been two main directions of research depending
on the interaction with the query optimizer: 1) optimizer
modifying techniques, which require alteration of the opti-
mizer and 2) optimizer independent techniques, which work
orthogonally to the optimizer.

2.1.1 Optimizer modifying
The first category heavily alters the optimizer, exploiting

its cost model and its internal data structures to suggest a
good partitioning strategy. Nehme and Bruno [20] extend



the notion of MEMO2 of traditional optimizers to that of
workload MEMO, which can be described as the union of
the individual MEMOs of all queries, given the workload
and the optimizer’s statistics. The cost of each possible par-
titioning of the data is approximated, in a way similar to
the cost estimation of potential query execution plans in
traditional optimizers. This technique ensures optimal data
partitioning based on the given workload. Unfortunately, it
does not have general applicability as it requires severe al-
teration of the query optimizer. In addition, the generation
of workload MEMO is a rather expensive process as it re-
quires several minutes for a workload of only 30 queries. In
order to give accurate recommendations, our method utilizes
a pool of tens of thousands of queries in just few seconds.

Other methods utilize the What-if Engine, which is al-
ready built into some query optimizers [22, 11]. The main
idea is to create a list of candidate partitions C for each
table and evaluate the entire workload on various combina-
tions of C using statistics. Due to the exponential num-
ber of such combinations, [22] utilizes Genetic Algorithms
to balance the elements of directed and stochastic search.
Unfortunately, although faster than deep integration, shal-
low integration has several disadvantages: first, the search
space of all feasible partitioning configurations is likely to
become extremely large, due to the combinatorial explosion
of combinations. Second, although smart techniques limit
the search space, the approach is still very expensive be-
cause each query in the workload needs to be evaluated in
several candidate what-if modes. Lastly, many systems (in-
cluding Amazon Redshift) do not support a what-if mode in
the optimizer, which limits the applicability of the approach
in large commercial systems.

2.1.2 Optimizer independent
The optimizer independent methods are closer to our work

[30, 10, 26, 24, 7, 28].
Zilio et. al. [30] also use a weighted graph to represent

the query workload, similarly to our approach. However, the
graph weights correspond to the frequency of operations and
do not capture the importance of different joins, as in our
case. This could mistakenly favor the collocation of cheaper
joins that appear more often in the workload, over expen-
sive joins that are less common. [30] proposes two heuristic
algorithms: IR, a greedy heuristic approach (similar to the
NG baseline of our experiments) that picks the best distri-
bution key for each table in isolation, and Comb, an exhaus-
tive search algorithm that is guided by heuristic pruning
and depends on optimizer estimates. Similarly, methods of
[10, 26] follow a greedy heuristic approach without any op-
timality guarantee3. However, as Theorem 2 in Section 4
shows, no polynomial-time heuristic can give a worst-case
approximation guarantee within any constant factor (say
1%) of the optimal solution, unless P = NP . Unlike previ-
ous approaches, our work describes an optimal solution (see
Equation 2 in Section 5.1), provides an in-depth complexity
analysis (NP-hard, see Theorem 2 in Section 4) and, in our
experiments, the proposed method BaW always reaches the
optimal within minutes (see Section 6.2).

2A search data structure that stores the alternative execu-
tion plans and their expected cost.
3The algorithm of [26] is similar to one of our heuristic meth-
ods, namely RC (see Section 5.2).

Table 1: Comparison to other methods.

BAW [30] [10] [26]

[24],
[7],
[28]

1. provably optimal 3 7 7 7 7

2. complexity analysis 3 7 7 7 7

3. deployed 3 ? ? 3 ?
4. cost-aware 3 7 3 3 3

5. extensible algorithm 3 7 7 ? 7

6. schema independent 3 3 3 ? 7

7. no indices 3 3 3 3 7

8. no replication 3 3 3 7 7

Stöhr et. al. [24] introduce an algorithm for data allo-
cation in a shared disk system assuming the star schema
architecture. They propose hierarchical fragmentation of
the fact table and a bitmap index for all combinations of
joins between the fact table and the dimensions. Then, they
perform a simple round robin distribution of the fact table
and the corresponding bitmap indices among the compute
nodes. Similarly, [7, 28] propose techniques that require the
construction and maintenance of indices, and allow some
level of replication. Unfortunately, these approaches impose
severe architectural restrictions and are not generally appli-
cable to large MPP systems that do not support indices,
such as Amazon Redshift. In addition, they entail extra
storage overhead for storing and maintaining the indices.
As we show in our experimental evaluation, real workloads
follow a much more involved architecture that cannot always
be captured by star/snowflake schemata.

Table 1 summarizes the optimizer independent methods,
based on the following critical dimensions:
1. provably optimal : the proposed algorithm provably con-

verges to the optimal solution,
2. complexity analysis: theoretical proof of the hardness of

the problem,
3. deployed : the approach is deployed at large scale,
4. cost-aware: the problem definition includes the cost of

joins (and not just their frequency),
5. extensible algorithm: the solution is an extensible meta-

algorithm that can incorporate any heuristic,
6. schema independent : no architectural assumptions are

made on the input schema (e.g., star/snowflake),
7. no indices: no auxiliary indices need to be maintained,
8. no replication: space-optimal, no data replication.
A green 3 (resp: red 7) in Table 1 indicates that a property
is supported (resp: not supported) by the corresponding
related paper, whereas a ’?’ shows that the paper does not
provide enough information. As Table 1 indicates, none of
the above methods matches all properties of our approach.

2.2 Related graph problems
The following classes of graph theoretical problems are

used in our theoretical analysis and/or algorithmic design.

2.2.1 Maximum Matching
Let a weighted undirected graph G = (V,E,w). A sub-

graph H = (V,EH , w) v G is a matching of G if the degree
of each vertex u ∈ V in H is at most one. The Maximum
Matching of G is a matching with the maximum sum of



weights. In a simple weighted graph, the maximum weight
matching can be found in time O(|V ||E| + |V |2 log |V |) [9,
4]. The naive greedy algorithm achieves a 1/2 approxima-
tion of the optimal matching in time O(|V | log |V |), similar
to a linear-time algorithm of Hougardy [14].

2.2.2 Maximum Happy Edge Coloring
In the Maximum Happy Edge Coloring (MHE) prob-

lem, we are given an edge-weighted graph G = (V,E,w),
a color set C = {1, 2, · · · , k}, and a partial vertex coloring
function ϕ : V ′ → C for some V ′ ( V . The goal is to
find a (total) color assignment ϕ′ : V → C extending ϕ and
maximizing the sum of the weights of mono-colored edges
(i.e. those edges (u, v) for which ϕ′(u) = ϕ′(v)). This prob-
lem is NP-hard, and the reductions in [6], [17], and [29]
can be combined to derive a 951/952 hardness of approxi-
mation. The problem has recently been shown to admit a
0.8535-approximation algorithm [29].

2.2.3 Max-Rep / Label Cover
The Max-Rep problem, known to be equivalent to Label-

Covermax, is defined as follows [16]: let G = (V,E) be a
bipartite graph with partitions A and B each of which is fur-
ther partitioned into k disjoint subsets A1, A2, · · ·Ak, and
B1, B2, · · ·Bk. The objective is to select exactly one vertex
from each Ai and Bj for i, j = 1, · · · , k so to maximize the
number of edges incident to the selected vertices. Unless
NP ⊆ Quasi-P, this problem is hard to approximate within

a factor of 2log1−ε n for every ε > 0, even in instances where
the optimal solution is promised to induce an edge between
every Ai, Bj pair containing an edge in G.

3. PROBLEM DEFINITION
Our data partitioning system collocates joins to maxi-

mally decrease the total network cost. Thus, we restrict
our attention solely to join queries4.

Definition 1. Let Q = {q1, q2, · · · , qn} be the query work-
load of a cluster. For our purposes each query is viewed as
a set of pairwise joins, i.e., qi = {ji1, ji2, · · · , jik, · · · jim}.
Each join is defined by the pair of tables it joins (t1k, t2k),
the corresponding join attributes (a1k, a2k) and the total cost
of the join in terms of processed bytes (wk), i.e., jk =<
t1k, t2k, a1k, a2k, wk >.

For instance, in the example provided in Figure 1, if the
query Q1 appeared 10 times in Q, each yielding a cost w,
then the query is represented as

Q1 =< Customer,Branch, c State, b State, 10w > .

Definition 2. A join jk =< t1k, t2k, a1k, a2k, wk > is
collocated, if tables t1k and t2k are distributed on attributes
a1k and a2k respectively.

Note that if a join jk is collocated, then at query time we
benefit from not having to redistribute wk bytes of data
through the network. The problem we solve in this paper
is, given the workload Q, identify which distribution key
to choose for each database table in order to achieve the

4Aggregations could also benefit from collocation in some
cases, but the benefit is smaller so they are not our focus
here. Nonetheless, our model can easily be extended to in-
corporate them.

highest benefit from collocated joins. Section 3.1 first intro-
duces Join Multi-Graph, a concise representation of the typ-
ical workload of a cluster. Section 3.2 formally defines the
“Distribution-Key Recommendation” problem on the Join
Multi-Graph.

3.1 Proposed structure: Join Multi-Graph

Given a cluster’s query workload Q, consider a weighted,
undirected multigraphGQ = (V,E,w), where V corresponds
to the set of tables in the cluster and E contains an edge
for each pair of tables that has been joined at least once in
Q. Also, let the attribute set Au of a vertex u ∈ V corre-
spond to the set of u’s columns that have been used as join
attributes at least once in Q (and, thus, are good candidates
for DKs). Each edge e = (u.x, v.y) with {u, v} ∈ V , x ∈ Au

and y ∈ Av encodes the join ‘u JOIN v ON u.x = v.y’5.
The weight w(e) : E → N+ represents the cumulative

number of bytes processed by that join in Q6 and quantifies
the benefit we would have from collocating the correspond-
ing join7. If a join occurs more than once in Q, its weight
in GQ corresponds to the sum of all bytes processed by the
various joins8. Since two tables may be joined on more than
one pair of attributes, the resulting graph may also contain
parallel edges between two vertices, making it a multigraph.

Figure 2(a) illustrates our running example of a Join Multi-
Graph GQ = (V,E,w). The tables that have participated
in at least one join in Q correspond to the vertex set V .
An edge represents a join. The join attributes are denoted
as edge-labels near the corresponding vertex. The cumula-
tive weight of a join is illustrated through the thickness of
the edge; a bold (resp. normal) edge corresponds to weight
value 2 (resp. 1). For instance, table B was joined with
table D on B.b = D.d and on B.b1 = D.d1 with weights 1
and 2 respectively. Finally, the attribute set (i.e., the set of
join attributes) of table B is AB = {b, b1}.
GQ is a concise way to represent the join history of a

cluster. Independently of the underlying scheme, the Join
Multi-Graph contains all valuable information of the join
history. It is a very robust and succinct representation that
adapts to changes in workload or data: if we have computed
GQ for a query workload Q, we can incrementally construct
GQ′ for workload Q′ = Q ∪ {q} for any new query q, by
increasing the weight of an existing edge (if the join has
already occurred in the past) or by adding a new edge (if q
contains a new join). Similarly, if the database tables have
increased/decreased considerably in size, this mirrors to the
weight of the join.

The number of vertices in the graph is limited by the
number of tables in the database, which does not usually
exceed several thousands. The number of edges is limited
by the number of distinct joins in the graph. In practice,
not all join attributes are good candidates for distribution
keys: columns with very low cardinality would result in high

5We only consider equality joins because the other types of
joins cannot benefit from collocation.
6In cases of multi-way joins, the weight function evaluates
the size of the intermediate tables.
7Appendix A.1 contains more details on how we chose this
function for our experiments.
8Due to different filter conditions and updates of the
database tables, the weight of the same join may differ
among several queries.



F

B

E

A

C

D

a

a

b bc

c c

b

e
c

b
d

b1 d1

a

a

: weight = 2
: weight = 1

(a) Example Join Multi-
Graph.

F

B

E

A

C

D

a

a

b bc

c c

b

e
c

b
d

b1 d1

a

a

: collocated
: non collocated

(b) WRred = 6.

F

B

E

A

C

D
a

a

b bc

c c

b
e

c
b d

b1 d1

a

a

(c) WRgreen = 3. (d) A real Join Multi-Graph.

Figure 2: Placement makes a difference: (a) exam-
ple of a Join Multi-Graph and two DK recomenda-
tions, namely (b) ‘red’ setting saves 6 units of work
(3 heavy, bold edges, have their tables collocated,
e.g., B.b1 − D.d1 ); (c) ‘green’ setting saves only 3
units of work (d) real JMGs can be quite complex.

skew of the data distribution, meaning that a few compute
nodes would be burdened by a large portion of the data,
whereas other nodes would be practically empty. Handling
of skew is outside the scope of our paper: if the data have
skew, this will be reflected on the cost of the join, that is
the weight w(e), which is an input to our algorithm. In
Appendix A.2 we provide more insight on our handling of
skew for our experiments. In what follows, we assume that
the input graph is already aware of skew-prone edges.

Figure 2(d) illustrates a real example of a Join Multi-
Graph, in which for readability we have excluded all vertices
with degree equal to one. Again the weight of an edge is
proportional to its thickness. It is evident from the figure
that the reality is often more complex than a star/snowflake
schema, as many fact tables join each other on a plethora
of attributes. Section 6 provides more insights about the
typical characteristics of real Join Multi-Graphs.

In the next section we utilize our Join Multi-Graph data
structure to formulate the “Distribution-Key Recommenda-
tion” problem.

3.2 Optimization problem: Distribution-Key
Recommendation

Suppose we are given a query workload Q and the corre-
sponding Join Multi-Graph GQ = (V,E,w). Let ru be an
element of u’s attribute set, i.e., ru ∈ Au. We refer to the
pair u.ru as the vertex recommendation of u and we define
the total recommendation R as the collection of all vertex
recommendations , i.e., R = {u.ru|u ∈ V }. For instance, the
recommendation R that results in the distribution of Figure
1(c), is R = {(Customer.c State), (Branch.b State)}. Note
that each vertex can have at most one vertex recommen-

dation in R. We define the weight WR of a total recom-
mendation R as the sum of all weights of the edges whose
endpoints belong to R, i.e.,

WR =
∑

e=(u.x,v.y)
ru=x,rv=y

w(e) (1)

Intuitively the weight of a recommendation corresponds
to the weight of the collocated joins that R would produce,
if all tables u ∈ R were distributed with DK(u) = ru. Since
we aim to collocate joins with maximum impact, our ob-
jective is to find the recommendation of maximum weight.
Formally, the problem we are solving is as follows:

Problem 1 (“Distribution-Key Recommendation”).
Given a Join Multi-Graph GQ, find the recommendation R∗

with the maximum weight , i.e.,

R∗ = argmax
R

WR

Continuing the running example, Figures 2(b),(c) illustrate
two different recommendations, namely Rred and Rgreen. A
normal (resp. dashed) edge denotes a collocated (resp. non-
collocated) join. Rred = {(B.b1), (C.c), (D.d1), (E.c), (F.c)}
and Rgreen = {(A.a), (B.b), (C.c), (D.d), (E.e), (F.a)}, with
corresponding weights WRred = w(C.c, F.c) +w(E.c, C.c) +
w(B.b1, D.d1) = 6 and WRgreen = w(E.e,B.b)+w(B.b,D.d)
+ w(F.a,A.a) = 3. Obviously Rred should be preferred as
it yields a larger weight, i.e., more collocated joins. Our
problem definition aims at discovering the recommendation
with the largest weight (WR) out of all possible combinations
of vertex recommendations.

The Join Multi-Graph can be used to directly compare
the collocation benefit between different recommendations.
For instance, we can quickly evaluate a manual choice (e.g.,
choice made by a customer), and compare it to the result of
our methods. If we deem that there is sufficient difference
among the two, we can expose the redistribution scheme
to the customers. Otherwise, if the difference is small, we
should avoid the redistribution, which (depending on the
size of the table) can be an expensive operation. When ex-
ternal factors make the potential future benefit of redistribu-
tion unclear (for instance, due to a possible change of archi-
tecture), the decision of whether or not to redistribute can
be cast as an instance of the Ski Rental Problem [15, 27]
(or related problems such as the Parking Permit Prob-
lem [18]), and therefore analyzed in the lens of competitive
analysis, which is out of scope for this paper. Alternatively,
one may resort to simple heuristics, e.g., by reorganizing
only if the net benefit is above some threshold value relative
to the table size.

Often times, the join attributes of a join either share the
same label, or (more generally) they can be relabelled to
a common label (without duplicating column names within
any of the affected tables). For instance, in Figure 1, if the
only joins are (b State, c State) and (b ID, c ID), we can
relabel those columns to just ‘State’ and ‘ID’, respectively,
without creating collisions in either table. The extreme case
in which all joins in the query workload have this property
commonly arises in discussion of related join-optimization
problems (e.g. [10, 25, 26]) and is combinatorially interest-
ing in its own right. We call this consistently-labelled sub-
problem DKRCL.



Problem 2 (DKRCL). Given a Join Multi-Graph GQ

in which all pairs of join attributes have the same label,
find the recommendation R∗ with the maximum weight, i.e.,
R∗ = argmaxRWR

4. DKR - THEORY
In this section, we show that both variants of DKR are

NP-complete, and are (to varying degrees) hard to approx-
imate.

Theorem 1 (Hardness of DKRCL). DKRCL general-
izes the Maximum Happy Edge Coloring (MHE) prob-
lem, and is therefore both NP-complete and inapproximable
to within a factor of 951/952.

Proof. Refer to Section 2.2.2 for the definition of MHE.
Given an MHE instance 〈G = (V,E), C, ϕ〉 , we can readily
convert it into the framework of DKRCL as follows. For each
vertex v ∈ V we create one table tv. If v is in the domain
of ϕ, then the attribute set of tv is the singleton set {ϕ(v)};
otherwise, it is the entire color set C. For each edge (u, v)
of weight w, we add a join between tu and tv of that same
weight for each color c in the attribute sets of both tu and tv
(thus creating either 0, 1, or |C| parallel, equal-weight joins
between the two tables). This completes the reduction.

An assignment of distribution keys to table tv corresponds
exactly to a choice of a color ϕ′(v) in the original problem.
Thus, solutions to the two problems can be put into a nat-
ural one-to-one correspondence, with the mapping preserv-
ing all objective values. Therefore, all hardness results for
Maximum Happy Edge Coloring directly carry over to
DKRCL. �

Intuitively, the above proof shows that MHE is a very par-
ticular special case of DKR. In addition to the assumptions
defining DKRCL, the above correspondence further limits
the diversity of attribute sets (either to singletons or to all
of C), and requires that any two tables with a join between
them must have an equal-weight join for every possible at-
tribute (in both attribute sets). As we now show, the general
problem without these restrictions is significantly harder.

Theorem 2 (Max-Rep hardness of DKR).
There exists a polynomial time approximation-preserving re-
duction from Max-Rep to DKR. In particular, DKR is
both NP-complete and inapproximable to within a factor of

2log1−ε n unless NP ⊆ DTIME(npoly logn), where n is the
total number of attributes.

Proof. Refer to Section 2.2.3 for the definition of Max-
Rep. Given a Max-Rep instance with graph G = (V,E),
whose vertex set V is split into two collections of pairwise-
disjoint subsets A = {A1, A2, · · · } and B = {B1, B2, · · · },
we construct a DKR instance as follows. Let C = A∪B; our
join multi-graph contains exactly one vertex uCi for each set
Ci ∈ C. Further, for each node uCi , we have one attribute
uCi .x for each x ∈ Ci. For each edge (a, b) ∈ E, we identify
the sets Ci 3 a and Cj 3 b containing the endpoints and
add a weight-1 edge between uCi .a and uCj .b.

There is a one-to-one correspondence between feasible so-
lutions to the initial Max-Rep instance and those of the
constructed DKR instance. For any solution to the DKR
instance, the selected hashing columns exactly correspond to
picking vertices from the Max-Rep instance. Because each

table is hashed on one column, the corresponding Max-Rep
solution is indeed feasible. Similarly, the vertices chosen in
any Max-Rep solution must correspond to a feasible assign-
ment of distribution keys to each table. Because the objec-
tive function value is preserved by this correspondence, the
theorem follows. �

Next, we show that the approximability of DKR and
Max-Rep differs by at most a logarithmic factor.

Theorem 3. An f(n)-approximation algorithm for Max-
Rep can be transformed into an O(f(n)(1+log(min(n,wr))))-
approximation algorithm for DKR, where wr = wmax/wmin

is the ratio of the largest to smallest nonzero join weights
and n is the total number of attributes.

Proof. We reverse the above reduction. Suppose we
are given an instance of DKR with optimal objective value
OPTDKR. Without loss of generality, we can assume that
all joins in the instance have weight at least wmax/n

3; oth-
erwise, we can discard all joins of smaller weight with only
a sub-constant multiplicative loss in the objective score.
Since log(wmax/wmin) = O(logn) in this refined instance,
log(min(n,wr)) = O(logwr) and therefore it suffices to find
an algorithm with approx. guarantee O(f(n)(1 + logwr)).

We next divide all join weights by wmin, and round down
each join weight to the nearest (smaller) power of 2. The first
operation scales all objective values by a factor of 1/wmin

(but otherwise keeps the structure of solutions the same) and
the second operation changes the optimal objective value
by a factor of at most 2. After this rounding, our instance
has k ≤ 1 + log2 wr different weights on edges. For each
such weight w, consider the Max-Rep instance induced only
on those joins of weight exactly w. Note that the sum of
the optimal objective values for each of these k Max-Rep
instances is at least equal to the objective value of the entire
rounded instance, and is thus within a factor 1/(2wmin) of
OPTDKR. Thus, one of these k Max-Rep instances must
have a solution of value at least 1/(2kwmin), and therefore
our Max-Rep approximation algorithm can find a solution
with objective value at least OPTDKR/(2kwminf(n)). We
output exactly the joins corresponding to this solution. In
the original DKR instance, the weights of the joins in this
output were each a factor of at least wmin greater than what
we scaled them to, so the DKR objective value of our output
is at least OPTDKR/(2kf(n)). The conclusion follows from
plugging in k = O(1 + logwr). �

As these theorems effectively rule out the possibility of ex-
act polynomial-time algorithms for these problems, we study
the efficacy of various efficient heuristic approaches, as well
as the empirical running time of an exact super polynomial-
time approach based on integer linear programming.

5. PROPOSED METHOD - ALGORITHMS
Based on the complexity results of the previous section,

we propose two distinct types of methods to solve Prob-
lem 1: The first, is an exact method based on integer lin-
ear programming (Section 5.1). The second, is a collec-
tion of heuristic variants, which exploit some similarities of
DKR related to graph matching (Section 5.2). Eventually,
Section 5.3 presents our proposed meta-algorithm, namely
Best of All Worlds (BaW), a combination of the exact
and heuristic approaches.



5.1 ILP: an exact algorithm
One approach to solving this problem involves integer pro-

gramming. We construct the program as follows. We have
one variable ya for each attribute, and one variable xab for
each pair (a, b) of attributes on which there exists a join.
Intuitively, we say that ya = 1 if a is chosen as the distri-
bution key for its corresponding table, and xab = 1 if we
select both a and b as distribution keys, and thus success-
fully manage to collocate their tables with respect to the
join on a and b. To this end, our constraints ensure that
each table selects exactly one attribute, as well as that the
value of xab is bounded from above by both ya and yb (in
an optimal solution, this means xab is 1 exactly when both
ya and yb are 1). Finally, we wish to maximize the sum∑

(a,b)∈E wabxab of the captured join costs. The full integer

program is provided below.

maximize
∑

(a,b)∈E

wabxab

subject to
∑
a∈v

ya = 1 ∀v ∈ V,

xab ≤ ya ∀a, b ∈ E,
xab ≤ yb ∀a, b ∈ E,

xab, ya ∈ {0, 1} ∀a, b ∈ E

(2)

Unfortunately, there is no fast algorithm for solving in-
teger linear programs unless P = NP . While the natural
linear programming relaxation of this problem can be solved
efficiently, it is not guaranteed to give integer values (or even
half-integer values) to its variables, as implied by the inap-
proximability results of Section 4. Further, fractional solu-
tions have no good physical interpretation in the context of
DKR: only collocating half of the rows of a join does not re-
sult in half of the network cost savings of a full collocation of
the same join. Thus, while we can run an ILP solver in the
hope that it quickly converges to an integer solution, we also
present a number of fast heuristic approaches for instances
where the solver cannot quickly identify the optimum.

5.2 Heuristic algorithms
Here we describe our heuristic methods that are moti-

vated by graph matching. We first discuss the relation of
Problem 1 to matching and then we provide the algorithmic
framework.

5.2.1 Motivation
Recall from Section 2.2.1 that the Maximum Weight Ma-

tching problem assumes as input a weighted graph G =
(V,E,w). The output is a set of edges EH ⊆ E such that
each vertex u ∈ V is incident to at most one edge in EH .

Assume the Join Multi-Graph GQ = (V,E,w) of a query
workloadQ. We next investigate the relationship of Problem
1 to Maximum Weight Matching , starting from the special
case, where the degree of any vertex u ∈ V equals to the
cardinality of u’s attribute set9, i.e., ∀u ∈ V , degGQ(u) =
|Au|. In other words, this assumption states that each join
involving a table u is on different join attributes than all
other joins that involve u. For instance, vertex F in Figure
2(a) has degGQ(F ) = |AF | = |{a, b, c}| = 3.
9We restrict our attention to the attributes that participate
in joins only.

Lemma 1. Given a query workload Q and the correspond-
ing Join Graph GQ = (V,E,w), assume a special case ,
where degGQ(u) = |Au|, ∀u ∈ V . Then the solution to this
special case of “Distribution-Key Recommendation” prob-
lem on Q is given by solving a Maximum Weight Matching
on GQ.

Proof. A recommendation R is equivalent to the set of
collocated edges. Since the degree of each vertex u ∈ V
equals to the cardinality of u’s attribute set, all edges Eu =
e1, e2, · · · edeg(u) ⊆ E incident to u have distinct attributes of
u, i.e, ei = (u.i, x.y). Then, any recommendation R contains
at most one edge from Eu for a vertex u. Thus, R is a
matching on GQ. Finding the recommendation with the
maximum weight is equivalent to finding a Maximum Weight
Matching on GQ. �

In general, however, the cardinality of the attribute set of
a vertex is not equal to its degree, but rather it is upper-
bounded by it, i.e., |Au| ≤ degGQ(u), ∀u ∈ V . With this
observation and Lemma 1, we prove the following theorem:

Theorem 4. The Maximum Weight Matching problem is
a special case of the “Distribution-Key Recommendation”
problem.

Proof. We show that any instance of Maximum Weight
Matching can be reduced to an instance of “Distribution-
Key Recommendation”. Let a weighted graph G be an input
to Maximum Weight Matching . We can always construct a
workload Q and the corresponding Join Multi-Graph GQ

according to the assumptions of Lemma 1. In particular,
for any edge e = (u, v, w) of G, we create an edge e′ =
(u′.i, v′.j, w) ensuring that attributes i and j will never be
used subsequently. The assumptions of Lemma 1 are satis-
fied, and an algorithm that solves “Distribution-Key Recom-
mendation” would solve Maximum Weight Matching . The
opposite of course does not hold, as shown in Section 4. �

Motivated by the similarity to Maximum Weight Match-
ing , we propose methods that first extract a matching and
then they refine it. Currently, the fastest algorithms to ex-
tract a matching have complexity O(

√
V E). This is too

expensive for particularly large instances of the problem,
where a strictly linear solution is required. For this reason,
in the following we aim for approximate matching methods.

5.2.2 Match-N-Grow (MNG) algorithm
The main idea is to extract the recommendation in two

phases. In Phase 1, MNG ignores the join attributes of the
multigraph and extracts an approximate maximum weight
matching in linear time, with quality guaranties that are at
least 1/2 of the optimal [14]. In Phase 2, MNG greedily
expands the recommendation of Phase 1.

Algorithm 1 contains the pseudocode of MNG. Phase 1
(lines 3-12) maintains two recommendations, namely R1 and
R2 that are initially empty. At each iteration of the outer
loop, it randomly picks a vertex u ∈ V with degree at least
one. Then, from all edges incident to u, it picks the heaviest
one (i.e., e = (u.x, v.y)) and assigns the corresponding end-
points (i.e., (u.x) and (v.y)) to Ri. The process is repeated
for vertex v and recommendation R3−i until no edge can be
picked. Intuitively, Phase 1 extracts two heavy alternating



input : a Join Multi-Graph GQ = (V,E,w)
output: A distribution key recommendation R

1 R1 ← ∅, R2 ← ∅, Er ← E, i← 1

2 // PHASE 1: Maximal Matching

3 while Er 6= ∅ do
4 pick an active vertex u ∈ V with degu ≥ 1
5 while u has a neighbour do
6 e← (u.x, v.y) such that w(e) ≥ w(e′)∀e′

incident to u // pick the heaviest edge
7 Ri ← Ri ∪ {(u, u.x), (v, v.y)}
8 i← 3− i // flip i : 1↔ 2
9 remove u and its incident edges from V

10 u← v

11 end

12 end

13 //PHASE 2: Greedy Expansion

14 Let R be the recommendation with the max
weight, i.e. R←W (R1) ≥W (R2)?R1 : R2

15 for u /∈ R do
16 e← (u.x, v.y) such that w(e) ≥ w(e′)∀e′

incident to u with (v, v.y) ∈ R
17 R← R ∪ {(u, u.x)}
18 end
19 return R

Algorithm 1: MNG: Heuristic approach based on
maximum weight matching.

paths10 and assigns their corresponding edges to recommen-
dations R1 and R2 respectively. At the end of Phase 1, let
recommendation R be the one with the largest weight.

Phase 2 (lines 15-18) extends the recommendation R by
greedily adding more vertex recommendations; for each ver-
tex u that does not belong to R, line 16 picks the heaviest
edge (i.e., e = (u.x, v.y)) that is incident to u and has the
other endpoint (i.e., (v.y)) in R. Then, it expands the rec-
ommendation by adding (u.x). Since all edges are consid-
ered at most once, the complexity of Algorithm 1 is O(E).
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Figure 3: Example of Phase 1 of MNG. The method
maintains two recommendations R1 and R2, which
alternatively improves. The active vertex is red.

Figure 3 illustrates recommendations R1 and R2 on the
Join Multi-Graph GQ of Figure 2(a), during 4 iterations of
the main loop of Phase 1 (i.e., lines 5-10). Initially, both
recommendations are empty (Figure3(a)). Let C be the

10Following the standard terminology of Matching theory, an
alternating path is a path whose edges belong to matchings
R1 and R2 alternatively.

active vertex (marked with red). MNG picks the heavi-
est edge incident to C, i.e., (C.c, F.c) and adds (C.c), (F.c)
in R1, while removing all edges incident to C from the
graph (Figure 3(b)). The active vertex now becomes F .
Since W (F.b,B.b) > W (F.a,A.a), R2 becomes (F.b,B.b)
and the edges incident to F are removed (Figure 3(c)).
Figure 3(d) illustrates the recommendations and the Join
Multi-Graph at the end of Phase 1. R1 is the heaviest of
the two with W (R1) = 4 > W (R2) = 2, thus R = R1. In
Phase 2, vertex E picks the heaviest of its incident edges in
GQ (i.e., (E.c, C.c)) and the final recommendation becomes
R = {(C.c), (F.c), (B.b1), (D.d1), (E.c)}, illustrated in Fig-
ure 2(b) with normal (non dashed) edges.

Following the same two-phase approach, where Phase 1
performs a maximal matching and Phase 2 greedy expan-
sion, we design a number of heuristics, described below. The
following variations are alternatives to Phase 1 (Matching
Phase) of Algorithm 1. They are all followed by the greedy
expansion phase (Phase 2). All heuristics iteratively assign
keys to the various tables, and never change the assignment
of a table. Thus, at any point in the execution of an algo-
rithm, we refer to the set of remaining legal edges, which are
those edges (u.x, v.y) whose set of two endpoint attributes
{x, y} is a superset of the DKs chosen for each of its two
endpoint tables {u, v} (and thus this join can still be cap-
tured by assigning the right keys for whichever of u and v is
yet unassigned).

Greedy Matching (GM). Sort the tables in order of heav-
iest outgoing edge, with those with the heaviest edges com-
ing first. For each table u in this ordering, sort the list of
legal edges outgoing from u. For each edge e = (u.x, v.y) in
this list, assign key x to u and y to v (if it is still legal to do
so when e is considered).

Random Choice (RC). Randomly split the tables into two
sets, A1 and A2, of equal size (±1 table). Take the better
of the following two solutions: (a) For each u ∈ A1, pick
an attribute x at random. Once these attributes have all
been fixed, for each v ∈ A2, pick an attribute maximizing
the sum of its adjacent remaining legal edges. (b) Repeat
the previous process with the roles of A1 and A2 reversed.

Random Neighbor (RN). For each attribute u.x of any
table, run the following procedure and eventually return the
best result: 1) Assign x to u. 2) Let T be the set of tables
adjacent to an edge with exactly one endpoint fixed. 3) For
each table v ∈ T , let e = (u.x, v.y) be the heaviest such
edge, and assign key y to v. Repeat 2) and 3) until T = ∅.

Lastly, as a baseline to our experiments, we consider the
naive greedy approach (Phase 2 of Algorithm 1).

Naive Greedy (NG). Start off with an empty assignment
of keys to tables. Let Er be the set of all legal joins. While
Er is non-empty, repeat the following three steps: (i) let
e = (u.x, v.y) be the maximum-weight edge in Er, breaking
ties arbitrarily; (ii) assign key x to u and v to y; (iii) remove
e from Er, as well as any other join in Er made illegal by
this assignment. Note that such a process will never assign
two distinct keys to the same table. For any table that is not
assigned a key by the termination of the above loop, assign
it a key arbitrarily.



Notably, variants of heuristics Greedy Matching, Ran-
dom Choice, and Random Neighbor were previously stud-
ied in [4], where the authors proved various guarantees on
their performance on Max-Rep instances. By alluding to
the DKR–Max-Rep connection described in Section 4, one
can expect similar quality guarantees to hold for our DKR
instances.

5.3 BAW: a meta-algorithm
As we demonstrate in the experimental section, there is no

clear winner among the heuristic approaches of Section 5.2.
Thus, we propose Best of All Worlds(BaW), a meta-
algorithm that combines all previous techniques. It assigns
a time budget to ILP and, if it times-out, it triggers all
matching based variants of Section 5.2.2 and picks the one
with the best score. Algorithm 2 contains the pseudo-code
of BaW.

input : a JMG GQ = (V,E,w), a time budget t
output: A distribution key recommendation

1 RILP ← ILP (GQ) and kill after time t.
2 if execution time of ILP ≤ t then
3 return RILP

4 RMNG ← MNG (GQ)
5 RGM ← GM (GQ)
6 RRC ← RC (GQ)
7 RRN ← RN (GQ)
8 return max(RILP, RMNG, RGM, RRC, RRN))

Algorithm 2: BaW: Best of all worlds meta-
algorithm.

6. EXPERIMENTS
In our evaluation we use 3 real datasets: Real1 and Real2

are join graphs that are extracted at random from real life
users of Redshift with various sizes and densities. Appendix
A describes how edge weights were obtained. TPC-DS [19] is
a well-known benchmark commonly applied to evaluate an-
alytical workloads. In order to assess the behaviour of the
methods in graphs with increasing density, we also use 4 syn-
thetic Join Multi-Graphs created by randomly adding edges
among 100 vertices (in a manner analogous to the Erdös-
Réyni construction of random simple graphs [8]). The total
number of edges ranges from 100 to 10 000, the maximum
number of attributes per table ranges from 1 to 100, and all
edge weights are chosen uniformly in the interval [0, 10 000].
Table 2 summarizes the characteristics of our datasets.

Table 2: Characteristics of datasets
dataset vertices edges |E|/|V |
Real1 1 162 2 356 2.03
Real2 1 342 2 677 1.99

TPC-DS 24 126 5.25

Synthetic 100

100 1
1 000 10
5 000 50
10 000 100

Figure 4 plots the distribution of size (in number of (a)
vertices and (b) edges) of real Redshift Join Multi-Graphs
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Figure 4: How big are join graphs in reality? Dis-
tribution of vertex-set and edge-set sizes.

in log-log scale. Note that as Appendix A.2 describes, edges
that could cause data skew have been handled during a pre-
processing phase. Both distributions follow the zipf curve
with slope α = −2: more than 99% of the graphs have less
than 1000 vertices and edges, but there are still a few large
graphs that span to several thousands of vertices and edges.

Section 6.1 compares our proposed methods in terms of
their runtime and the quality of the generated recommenda-
tions. Section 6.2 demonstrates the effectiveness of our rec-
ommendations by comparing the workload of real settings,
before and after the implementation of our recommended
distribution keys.

6.1 Comparison of our methods
All methods were implemented in Python 3.6. For ILP

we used PuLP 2.0 library with the CoinLP solver. We plot
our experimental results using boxplots (y-axis). Specifi-
cally, each boxplot represents the distribution of values for
a randomized experiment; the vertical line includes 95% of
the values, the rectangle contains 50% of the values, and
the horizontal line corresponds to the median value. The
outliers are denoted with disks. For the randomized algo-
rithms, we repeat each experiment 100 times. To visually
differentiate the greedy baseline (NG) from the matching
based heuristics, we use white hashed boxplot for NG and
gray solid boxplots for the rest.

6.1.1 Real datasets
Figure 5 compares the performance and the runtime of

our proposed methods on the real datasets. Each row of
Figure 5 corresponds to a real dataset, namely Real1, Real2
and TPC-DS. The first column plots the performance of the
various methods in terms of WR, i.e., the total weight of the
recommendation (the higher the better).

Overall, RN and MNG have very consistent performance
that is closely approaching the exact algorithm (ILP). RN
in particular, almost always meets the bar of the optimal
solution. On the other hand, the greedy baseline NG varies
a lot among the different executions, and usually under-
performs: the mean value of NG is almost 3x worse than
the optimal. This is expected as greedy decisions are usually
suboptimal because they only examine a very small subset of
the graph and they do not account for the implications to the
other vertices. In very few cases (around 1%) NG manages
to return a solution with weight similar to the optimal.

The second column of Figure 5 plots the runtime com-
parison of our methods (the lower the better). Note that
the y-axis is in logarithmic scale. Notably, RN takes much
longer than the other heuristics to complete (its mean value
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Figure 5: Performance and runtime of methods real
datasets. No clear winner.

is 4x higher than the other techniques), and its runtime is
comparable to only that of ILP, which yields the exact solu-
tion. This indicates that the consistently high performance
of the method comes at a high cost. Concerning the other
heuristics, they all perform similarly in terms of runtime,
with GM having a slight edge over the others. Overall,
MNG is consistently highly performant and runs very fast.

6.1.2 Synthetic datasets
To evaluate the scalability of the various methods, we uti-

lize synthetic workloads, with a varying number of edges. In
all cases, the number of nodes is fixed to 100. As a repre-
sentative technique of the matching approaches, we focus
our attention on MNG. NG has already shown to under-
perform in our real datasets, so we exclude it from further
consideration.

Figure 6(a) compares the two methods on the quality of
the returned solution. The x-axis corresponds to the size
(in thousands of edges) of the synthetic graphs and the y-
axis corresponds to WR, i.e., the total weight of the recom-
mendation. ILP finds a better solution compared to MNG,
especially for denser graphs, for which it can be up to 20%
better. Figure 6(b) compares the execution time of the two
approaches. ILP is always slower than MNG, because the
first gives the exact solution, whereas the second heuristi-
cally finds an approximate. ILP’s runtime increases expo-
nentially with the density of the graph (reaching 100 seconds
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Figure 6: Results on synthetic datasets. (a) Per-
formance as weight of recommendation (WR) of ILP
and MNG. (b) Runtime of ILP and MNG (seconds).

for the densest), whereas MNG is always much faster and
stays under 0.1 seconds even for dense graphs (10k edges).

Our combined meta-algorithm BaW finds a balance be-
tween the runtime and quality of the proposed techniques
by applying a time budget to the execution of ILP. Given
that the size of the largest connected components of real
join graphs is typically within an order of magnitude of a
thousand edges, BaW finds the optimal solution in a matter
of seconds in Amazon Lambda (the allowed time budget t
was 5 minutes but ILP finishes in less than a minute in the
vast majority of the cases).

6.2 Quality of recommendations
This section evaluates the actual benefit (in terms of query

execution and network cost) of “Dist-Key” distribution style
using the keys recommended by BaW, compared to the de-
fault “Even” distribution, i.e., Round Robin distribution of
the table rows among the nodes of the cluster.
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Figure 7: BAW wins almost always: Quality of rec-
ommendations in TPC-DS. Running time (log scale)
vs query-ID - BAW often achieves dramatic savings
(18x) especially at the heavier queries.

Initially we perform the experiment in 3TB TPC-DS work-
load, using a four-node dc2.8xl Redshift cluster [12]. We run
the workload once and we construct the corresponding Join
Multi-Graph. We use BaW to pick the best distribution
keys for the observed workload. With these keys, we dis-
tribute the tables’ data using Redshift’s Dist-Key distribu-
tion style11. Finally, we run again the workload to compare
the runtime of each of the queries among the two settings (in

11We used the default “Even” distribution if BaW produced
no recommendation for a certain table.
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Figure 8: BAW saves: Effect of recommendations on real data. [upper-blue line] Network cost (%) for queries
touching the recommended tables. The red line indicates the time of implementation of our recommendations.
[lower-green line] Total scanned data (%) versus time for the redistributed tables.

both cases we discard the first run to exclude compilation
time).

Figure 7 (alternative representation of Figure 1(d)) illus-
trates the execution time (log scale) versus the query id for
the two methods, where the queries are ordered by their
runtime in “Even”. For the majority of the queries, BaW
outperforms “Even” by up to 18x, as it is illustrated by the
red arrow in the figure. This enormous performance ben-
efit is explained by the collocation of expensive joins and
shows that BaW is capable of finding the most appropriate
distribution keys for complex datasets such as TPC-DS. On
the other hand, several queries perform similarly in the two
distribution styles because they are not joining any of the
redistributed tables. Finally, we see some regression towards
the tail of the distribution, i.e., for queries that run in under
10 seconds; this is attributed to the fact that Dist-Key may
introduce slight skew in the data distribution, which can
marginally regress some already fast queries. However, the

small overhead is insignificant relative to the huge benefit of
collocation for expensive queries12.

We repeat this experiment on real-world workloads of
users that implemented our recommendations (Figure 8).
We picked 4 real scenarios and observed the workload for a
few days. Based on our observation we incrementally gener-
ate the Join Multi-Graph and we run BaW to recommend
the most appropriate distribution keys to some target ta-
bles. Data redistribution of all target tables happens at
approximately the same time. For all queries that touch
these tables, we keep track of the total network cost (i.e.,
data broadcasted or distributed at query time) and the total
workload (i.e., data scanned at query time), before and after
the data redistribution.

12Note that further performance improvement in TPC-DS is
achieved by also picking the most appropriate sort-keys [13].



Each sub-figure of Figure 8 corresponds to one of our real
settings and consists of two plots; the upper one - blue line
illustrates the total network cost and the lower one -green
line the total workload (data scanned) of relevant tables
over the same period of time. The x-axis corresponds to the
hours around the time of deployment, which is indicated by
a red, dotted, vertical line.

Overall we observe that after deployment, the network
cost drops by as much as 32x (Figures 8(a), (b)), whereas
the total workload (data scanned) for the same period of
time remains stable. This clearly shows that BaW’s choice
of distribution keys was very effective: the query workload
did not change, but the network cost dropped drastically.
In addition, many of the joins that used to require data
redistribution or broadcasting at query time now happen
locally to each compute node, which explains why the cost
drops to zero at times.

In Figure 8(b), around the time of deployment, we see a
spike in both the network cost and the scanned data. This is
expected because changing the distribution key of the tables
itself may induce network cost that could be considerable,
depending on the size of the tables. Nonetheless, this is a one
time effort whereas the benefits of collocation accumulate
over time.

In addition, Figures 8(c),(d) show a drastic drop of the
network cost (16x and 5x respectively), even when the total
amount of scanned data increases by up to 2.7x. The reason
for this13 is that, without the network overhead, queries
are more efficient, and thus they use system resources for
less time. Consequently, execution slots are released faster
allowing more queries to run in the unit of time, resulting
in increased scanned data of the relevant tables.

To summarize, the observations of our experiments are:
• Very fast techniques: The majority of the heuristic

methods terminate within seconds for graphs of thousands
of edges. ILP in Amazon Lambda finds the optimal so-
lution in less than a minute for almost all cases seen in
Redshift so far.
• No clear winner among heuristics: The heuristic

methods perform differently in our various settings. This
motivates BaW, a meta-algorithm that picks the best of
the individual techniques.
• Network cost reduction: BaW applied in 4 real sce-

narios identified distribution keys that decreased the net-
work cost up to 32x for joins over constant or even heavier
query workload.

7. CONCLUSIONS
In this paper we formulate the problem of “Distribution-

Key Recommendation” as a novel combinatorial optimiza-
tion problem defined on the Join Multi-Graph, and we study
its complexity. We show that not only it is NP-complete,
but it is also hard to approximate within any constant fac-
tor. For this reason, we present BaW, a meta-algorithm
to solve “Distribution-Key Recommendation” problem effi-
ciently. Its main idea is to combine an exact ILP based
solution, with heuristic solutions based on maximum weight
matching. The exact solution is only allowed to run for
a given time budget; the heuristic algorithms follow a two

13Based on the assumption that the workload remains con-
stant.

phase approach: Phase 1 performs an approximate maxi-
mum matching on Join Multi-Graph and Phase 2, greedily
extends the recommendation. BaW picks the best of the
above methods.

The contributions of our approach are:
• Problem formulation: We introduce Join Multi-Graph,

a concise graph representation of the join history of a
cluster and we define the “Distribution-Key Recommen-
dation” problem (DKR) as a novel graph problem on the
Join Multi-Graph.
• Theoretical Analysis: We analyse the complexity of

DKR and of some special case variants and we prove that
they are both NP-complete and hard to approximate.
• Fast Algorithm: We propose BaW, an efficient meta-

algorithm to solve DKR.
• Validation on real data: We experimentally demon-

strate that BaW improves the performance of real work-
loads by virtually eliminating the network cost.

APPENDIX
A. IMPLEMENTATION DETAILS

This section discusses some implementation details used in
our experiments, concerning the selection of weights and the
handling of skew for edges of the Join Multi-Graph. They
are included here for completeness as these decisions are
orthogonal to the problem we solve in this paper.

A.1 Choosing weights
Recall from Section 3.2 that the weight w(e) : E → N+

of an edge e represents the cumulative number of bytes pro-
cessed by that join (after any pre-join filters and column
pruning has been applied). For instance, assume b1 and b2
the bytes of join tables t1 JOIN t2, and let b1 < b2. The
weight of edge (t1.b1, t2.b2) was given as an input based on
the formula:

W = min (b1 + b2, b1 ∗NODES) (3)

where NODES is the number of nodes in the cluster. The
two arguments of min() in Equation 3 correspond to the cost
of the two options of Redshift’s optimizer to perform the
distributed hash join (for non collocated tables): 1) to re-
distribute both tables on the join attributes or 2) to broad-
cast the smaller table to all compute nodes. Intuitively, the
above function approximates the communication cost that
one would have to pay during query execution, if the tables
were not collocated. Note that b1 and b2 can be obtained
asynchronously from the system logs of a join, thus there is
no overhead in query execution.

A.2 Handling of data skew
We assume that penalty for data skew is already included

in the join cost (see Section 3.2 Equation 1), which is an
input to our problem, and thus orthogonal to the method
proposed in this work. For our experiments, columns that
may introduce data skew are penalized using statistics: if the
number of distinct values of a column over the approximate
total number of rows in the table is larger than a threshold
θ1, and the number of distinct values over the number of
compute nodes is larger than a threshold θ2, then the col-
umn contains enough distinct values to be considered safe
in terms of skew. Otherwise it is removed from the graph.
Thresholds θ1, θ2 were chosen experimentally.
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