[38] Eden Chlamtac, Michael Dinitz, Christian Konrad, Guy Kortsarz, and George
Rabanca. The densest k–subhypergraph problem. In LIPIcs-Leibniz Interna-
tional Proceedings in Informatics, volume 60. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2016.
[39] Eden Chlamtac, Michael Dinitz, and Robert Krauthgamer. Everywhere-sparse
spanners via dense subgraphs. In FOCS, pages 758–767, 2012.
[40] Eden Chlamt´aˇc, Michael Dinitz, and Yury Makarychev. Minimizing the union:
Tight approximations for small set bipartite vertex expansion. In SODA, pages
881–899, 2017.
[41] Richard L Church, Maria P Scaparra, and Richard S Middleton. Identifying
critical infrastructure: the median and covering facility interdiction problems.
Annals of the Association of American Geographers, 94(3):491–502, 2004.
[42] Julia Chuzhoy, Sudipto Guha, Eran Halperin, Sanjeev Khanna, Guy Kortsarz,
Robert Krauthgamer, and Joseph Seffi Naor. Asymmetric k–center is log ∗n-hard
to approximate. Journal of the ACM (JACM), 52(4):538–551, 2005.
[43] Julia Chuzhoy, Yury Makarychev, Aravindan Vijayaraghavan, and Yuan Zhou.
Approximation algorithms and hardness of the k–route cut problem. ACM Trans-
actions on Algorithms (TALG), 12(1):2, 2016.
[44] Ferdinando Cicalese, Gennaro Cordasco, Luisa Gargano, Martin Milaniˇc, Joseph
Peters, and Ugo Vaccaro. Spread of influence in weighted networks under time
and budget constraints. Theoretical Computer Science, 586:40–58, 2015.
[45] Ferdinando Cicalese, Gennaro Cordasco, Luisa Gargano, Martin Milaniˇc, and
Ugo Vaccaro. Latency-bounded target set selection in social networks. Theoret-
ical Computer Science, 535:1–15, 2014.
[46] Amin Coja-Oghlan, Uriel Feige, Michael Krivelevich, and Daniel Reichman. Con-
tagious sets in expanders. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1953–1987. SIAM, 2015.
[47] Michael Dinitz and Gordon T Wilfong. iBGP and constrained connectivity. In
APPROX-RANDOM, pages 122–133. Springer, 2012.
[48] Irit Dinur and Samuel Safra. On the hardness of approximating minimum vertex
cover. Annals of Mathematics, pages 439–485, 2005.
[49] Irit Dinur and Shmuel Safra. On the hardness of approximating label-cover.
Information Processing Letters, 89(5):247–254, 2004.
[50] Irit Dinur and David Steurer. Analytical approach to parallel repetition. In
Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pages
624–633. ACM, 2014.
107